Split-cross antenna based narrowband mid-infrared absorber for sensing applications

被引:16
作者
Yang, Ao [1 ]
Yang, Kecheng [1 ]
Zhou, Lun [1 ]
Li, Junyu [1 ]
Tan, Xiaochao [1 ]
Liu, Huan [1 ]
Song, Haisheng [1 ,2 ]
Tang, Jiang [1 ,2 ]
Liu, Feng [3 ]
Yi, Fei [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoantenna; Absorbers; Mid-infrared; Sensors; Plasmonics; Narrowband; DETECTOR; SENSOR;
D O I
10.1016/j.optcom.2016.11.029
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have investigated numerically a narrowband near unity mid-infrared absorber based on a periodic array of gold split cross antenna backed by a dielectric spacer and a gold backmirror. We systematically studied the spectral dependence on the antenna parameters and explored the optimized parameters for nanofabrication. The optimized structure has a linewidth of 39 nm at 3.17 mu m and the peak absorption is 96.5%. This can be explained in terms of surface lattice resonance of the periodic structure. The investigated structure can be devised as a mid-infrared refractive index sensor. Due to the strong near field enhancement and spectral dependence on the surface dielectric conditions, the narrow linewidth arises from the coupled plasmonic-photonic modes in the structure and has potential applications in plasmonic biosensing.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 32 条
  • [21] Antennas for light
    Novotny, Lukas
    van Hulst, Niek
    [J]. NATURE PHOTONICS, 2011, 5 (02) : 83 - 90
  • [22] Ogawa S., 2015, TECHNOL APPL, V9451
  • [23] Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber
    Ogawa, Shinpei
    Komoda, Junya
    Masuda, Kyohei
    Kimata, Masafumi
    [J]. OPTICAL ENGINEERING, 2013, 52 (12)
  • [24] Palik E. D., 1998, Handbook of Optical Constants in Solids, P350
  • [25] Mid-infrared plasmonic biosensing with graphene
    Rodrigo, Daniel
    Limaj, Odeta
    Janner, Davide
    Etezadi, Dordaneh
    Javier Garcia de Abajo, F.
    Pruneri, Valerio
    Altug, Hatice
    [J]. SCIENCE, 2015, 349 (6244) : 165 - 168
  • [26] Non-selective NDIR array for gas detection
    Rubio, R.
    Santander, J.
    Fonseca, L.
    Sabate, N.
    Gracia, I.
    Cane, C.
    Udina, S.
    Marco, S.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2007, 127 (01) : 69 - 73
  • [27] Three-gas detection system with IR optical sensor based on NDIR technology
    Tan, Qiulin
    Tang, Licheng
    Yang, Mingliang
    Xue, Chenyang
    Zhang, Wendong
    Liu, Jun
    Xiong, Jijun
    [J]. OPTICS AND LASERS IN ENGINEERING, 2015, 74 : 103 - 108
  • [28] Photothermal reshaping of gold nanoparticles in a plasmonic absorber
    Wang, Jing
    Chen, Yiting
    Chen, Xi
    Hao, Jiaming
    Yan, Min
    Qiu, Min
    [J]. OPTICS EXPRESS, 2011, 19 (15): : 14726 - 14734
  • [29] Simple Analytical Expression for the Peak-Frequency Shifts of Plasmonic Resonances for Sensing
    Yang, Jianji
    Giessen, Harald
    Lalanne, Philippe
    [J]. NANO LETTERS, 2015, 15 (05) : 3439 - 3444
  • [30] Thermoplasmonic Membrane-Based Infrared Detector
    Yi, Fei
    Zhu, Hai
    Reed, Jason C.
    Zhu, Alexander Y.
    Cubukcu, Ertugrul
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (02) : 202 - 205