Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus

被引:28
作者
Billig, Yuly [1 ]
Molev, Alexander [2 ]
Zhang, Ruibin [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Lie algebra of vector fields; vertex algebras; generalized Verma modules;
D O I
10.1016/j.aim.2008.03.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study irreducible representations for the Lie algebra of vector fields on a 2-dimensional torus constructed using the generalized Verma modules. We show that for a certain choice of parameters these representations remain irreducible when restricted to a loop subalgebra in the Lie algebra of vector fields. We prove this result by studying vertex algebras associated with the Lie algebra of vector fields on a torus and solving non-commutative differential equations that we derive using the vertex algebra technique. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1972 / 2004
页数:33
相关论文
共 22 条
[21]   Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E [J].
Calinescu, C. ;
Lepowsky, J. ;
Milas, A. .
JOURNAL OF ALGEBRA, 2010, 323 (01) :167-192
[22]   Invariant bilinear operators and the second ????(2)-relative cohomology of the Lie algebra of vector fields on Double-struck capital R [J].
Abdaoui, Meher .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (02)