Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus

被引:28
作者
Billig, Yuly [1 ]
Molev, Alexander [2 ]
Zhang, Ruibin [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Lie algebra of vector fields; vertex algebras; generalized Verma modules;
D O I
10.1016/j.aim.2008.03.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study irreducible representations for the Lie algebra of vector fields on a 2-dimensional torus constructed using the generalized Verma modules. We show that for a certain choice of parameters these representations remain irreducible when restricted to a loop subalgebra in the Lie algebra of vector fields. We prove this result by studying vertex algebras associated with the Lie algebra of vector fields on a torus and solving non-commutative differential equations that we derive using the vertex algebra technique. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1972 / 2004
页数:33
相关论文
共 14 条
[1]   Irreducible representations for toroidal Lie algebras [J].
Berman, S ;
Billig, Y .
JOURNAL OF ALGEBRA, 1999, 221 (01) :188-231
[2]   Weight modules over exp-polynomial Lie algebras [J].
Billig, Y ;
Zhao, KM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 191 (1-2) :23-42
[3]  
Billig Y, 2006, INT MATH RES NOTICES, V2006
[4]  
Dong C., 2002, Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory, Charlottesville, VA, 2000, P69
[5]   Irreducible non-dense A((1))(1)-modules [J].
Futorny, VM .
PACIFIC JOURNAL OF MATHEMATICS, 1996, 172 (01) :83-99
[6]  
Gerasimov A, 2004, INT MATH RES NOTICES, V2004, P823
[7]  
Kac V., 1998, U LECT SER, V10
[8]  
Kac V.G, 1990, INFINITE DIMENSIONAL, Vthird, DOI DOI 10.1017/CBO9780511626234
[9]   On the determinant of Shapovalov form for generalized Verma modules [J].
Khomenko, A ;
Mazorchuk, V .
JOURNAL OF ALGEBRA, 1999, 215 (01) :318-329
[10]   CONSTRUCTION OF AFFINE LIE-ALGEBRA A(1)1 [J].
LEPOWSKY, J ;
WILSON, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (01) :43-53