ACPA Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β-Smad2/3 Signaling-Mediated Lung Fibroblast Activation

被引:9
|
作者
Chen, Dongxin [1 ]
Tang, Huirong [1 ]
Jiang, Hongchao [1 ]
Sun, Lei [1 ]
Zhao, Wenjuan [1 ]
Qian, Feng [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Engn Res Ctr Cell & Therapeut Antibody, Sch Pharm, Minist Educ, Shanghai, Peoples R China
[2] Bengbu Med Coll, Anhui Prov Key Lab Translat Canc Res, Bengbu, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
arachidonoylcyclopropylamide; cannabinoid type 1 receptor; fibroblast; idiopathic pulmonary fibrosis; transforming growth factor-beta; CANNABINOID RECEPTOR 1; TGF-BETA;
D O I
10.3389/fphar.2022.835979
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Pulmonary fibrosis is a group of life-threatening diseases with limited therapeutic options. The involvement of cannabinoid type 1 receptors (CB1R) has been indicated in fibrotic diseases, but whether or not the activation of CB1R can be a benefit for fibrosis treatment is controversial. In this study, we investigated the effects of arachidonoylcyclopropylamide (ACPA), as a selective CB1R agonist, on bleomycin (BLM)-induced pulmonary fibrosis. We showed that ACPA treatment significantly improved the survival rate of BLM-treated mice, alleviated BLM-induced pulmonary fibrosis, and inhibited the expressions of extracellular matrix (ECM) markers, such as collagen, fibronectin, and alpha-SMA. The enhanced expressions of ECM markers in transforming growth factor-beta (TGF-beta)-challenged primary lung fibroblasts isolated from mouse lung tissues were inhibited by ACPA treatment in a dose-dependent manner, and the fibroblast migration triggered by TGF-beta was dose-dependently diminished after ACPA administration. Moreover, the increased mRNA levels of CB1R were observed in both lung fibroblasts of BLM-induced fibrotic mice in vivo and TGF-beta-challenged primary lung fibroblasts in vitro. CB1R-specific agonist ACPA significantly diminished the activation of TGF-beta-Smad2/3 signaling, i.e., the levels of p-Smad2 and p-Smad3, and decreased the expressions of downstream effector proteins including slug and snail, which regulate ECM production, in TGF-beta-challenged primary lung fibroblasts. Collectively, these findings demonstrated that CB1R-specific agonist ACPA exhibited antifibrotic efficacy in both in vitro and in vivo models of pulmonary fibrosis, revealing a novel anti-fibrosis approach to fibroblast-selective inhibition of TGF-beta-Smad2/3 signaling by targeting CB1R.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Evogliptin attenuates bleomycin-induced lung fibrosis via inhibiting TGF-β/Smad signaling in fibroblast
    Ba, Y-D
    Sun, J-H
    Zhao, X-X
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (20) : 10790 - 10798
  • [2] Opg May Protect Bleomycin-Induced Pulmonary Fibrosis By Inhibiting Smad2/3 Dependent Tgf-β1 Activation
    Weng, D.
    Li, H.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193
  • [3] Opg May Protect Bleomycin-Induced Pulmonary Fibrosis By Inhibiting Smad2/3 Dependent Tgf-β1 Activation
    Weng, D.
    Li, H.
    Ge, B.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191
  • [4] Opg May Protect Bleomycin-Induced Pulmonary Fibrosis By Inhibiting Smad2/3 Dependent Tgf-β1 Activation
    Weng, D.
    Zheng, R.
    Li, H.
    Ge, B.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [5] OPG may protect bleomycin-induced pulmonary fibrosis by inhibiting SMAD2/3 dependent TGF-β1 activation
    Weng, D.
    Li, H.
    Ge, B.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 : 1097 - 1097
  • [6] Bufei huoxue capsule alleviates bleomycin-induced pulmonary fibrosis in mice via TGF-β1/Smad2/3 signaling
    Li, Yuanyuan
    Qin, Wenguang
    Liang, Qiuling
    Zeng, Jiamin
    Yang, Qiong
    Chen, Yuqin
    Wang, Jian
    Lu, Wenju
    JOURNAL OF ETHNOPHARMACOLOGY, 2023, 316
  • [7] Polydatin prevents bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β/Smad/ERK signaling pathway
    Liu, Yan-Lu
    Chen, Bao-Yi
    Nie, Juan
    Zhao, Guang-Hui
    Zhuo, Jian-Yi
    Yuan, Jie
    Li, Yu-Cui
    Wang, Ling-Li
    Chen, Zhi-Wei
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (05)
  • [8] Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice
    Guo, Jiasen
    Fang, Yinshan
    Jiang, Fangxin
    Li, Lian
    Zhou, Honggang
    Xu, Xiaojun
    Ning, Wen
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2019, 864
  • [9] Sulforaphane attenuates lung fibrosis in bleomycin-induced pulmonary fibrosis via inhibition of TGF-β/Smad signaling
    Kyung, Sun Young
    Kim, You Jin
    Lee, Sang Min
    Kang, Sin Myung
    Lee, Sang Pyo
    Park, Jeong-Woong
    Jeong, Sung Hwan
    EUROPEAN RESPIRATORY JOURNAL, 2014, 44
  • [10] OPG May Protect Bleomycin-Induced Pulmonary Fibrosis by Inhibiting SMAD2/3 Dependent TGF-Beta1 Activation
    Weng, D.
    Li, H.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201