The Manin-Mumford conjecture and the model theory of difference fields

被引:74
作者
Hrushovski, E [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
Abelian varieties; torsion points; difference fields; geometric stability; model theory of difference equations;
D O I
10.1016/S0168-0072(01)00096-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using methods of geometric stability (sometimes generalized to finite S1 rank), we determine the structure of Abelian groups definable in ACFA, the model companion of fields with an automorphism. We also give general bounds on sets definable in ACFA. We show that these tools can be used to study torsion points on Abelian varieties; among other results, we deduce a fairly general case of a conjecture of Tate and Voloch on p-adic distances of torsion points from subvarieties. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:43 / 115
页数:73
相关论文
共 31 条
[11]   REMARKS CONCERNING A CONJECTURE BY LANG,SERGE [J].
HINDRY, M .
INVENTIONES MATHEMATICAE, 1988, 94 (03) :575-603
[12]   The Mordell-Lang conjecture for function fields [J].
Hrushovski, E .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :667-690
[13]  
HRUSHOVSKI E, 1995, J REINE ANGEW MATH, V462, P69
[14]   UNIDIMENSIONAL THEORIES ARE SUPERSTABLE [J].
HRUSHOVSKI, E .
ANNALS OF PURE AND APPLIED LOGIC, 1990, 50 (02) :117-138
[15]  
HRUSHOVSKI E, 1995, P FIELD ARITHM C I A
[16]  
HRUSHOVSKI E, 1986, LOGIC C, P85
[17]   Simple theories [J].
Kim, B ;
Pillay, A .
ANNALS OF PURE AND APPLIED LOGIC, 1997, 88 (2-3) :149-164
[18]   PRINCIPAL HOMOGENEOUS SPACES OVER ABELIAN VARIETIES [J].
LANG, S ;
TATE, J .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (03) :659-684
[19]  
LANG S, 1991, NUMBER THEORY, V60, pR3
[20]  
MASSER DW, 1995, I HAUTES ETUDES SCI, V81, P5