The Manin-Mumford conjecture and the model theory of difference fields

被引:74
作者
Hrushovski, E [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
Abelian varieties; torsion points; difference fields; geometric stability; model theory of difference equations;
D O I
10.1016/S0168-0072(01)00096-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using methods of geometric stability (sometimes generalized to finite S1 rank), we determine the structure of Abelian groups definable in ACFA, the model companion of fields with an automorphism. We also give general bounds on sets definable in ACFA. We show that these tools can be used to study torsion points on Abelian varieties; among other results, we deduce a fairly general case of a conjecture of Tate and Voloch on p-adic distances of torsion points from subvarieties. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:43 / 115
页数:73
相关论文
共 31 条
[1]  
BOST JB, SEM BOURB EXP 795
[2]   ONONE-BASED THEORIES [J].
BOUSCAREN, E ;
HRUSHOVSKI, E .
JOURNAL OF SYMBOLIC LOGIC, 1994, 59 (02) :579-595
[3]   LOCALLY MODULAR THEORIES OF FINITE RANK [J].
BUECHLER, S .
ANNALS OF PURE AND APPLIED LOGIC, 1986, 30 (01) :83-94
[4]   Geometry of p-jets [J].
Buium, A .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (02) :349-367
[5]  
Chang C. C., 1990, MODEL THEORY
[6]  
CHATZIDAKIS Z, 2000, AMS T, V351, P2997
[7]  
CHATZIDAKIS Z, IN PRESS T AMS
[8]  
CHERLIN G, QUASIFINITE STRUCTUR
[9]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[10]  
Fulton W., 2013, INTERSECTION THEORY, DOI DOI 10.1007/978-3-662-02421-8