A new spatially adaptive wavelet-based method is introduced for reducing noise in images corrupted by additive white Gaussian noise. It is shown that a symmetric normal inverse Gaussian distribution is highly suitable for modelling the wavelet coefficients. In order to estimate the parameters of the distribution, a maximum-likelihood-based technique is proposed, wherein the Gauss-Hermite quadrature approximation is exploited to perform the maximisation in a computationally efficient way. A Bayesian minimum mean-squared error (MMSE) estimator is developed utilising the proposed distribution. The variances corresponding to the noise-free coefficients are obtained from the Bayesian estimates using a local neighbourhood. A modified linear MMSE estimator that incorporates both intra-scale and inter-scale dependencies is proposed. The performance of the proposed method is studied using typical noise-free images corrupted with simulated noise and compared with that of the other state-of-the-art methods. It is shown that the proposed method gives higher values of the peak signal-to-noise ratio compared with most of the other denoising techniques and provides images of good visual quality. Also, the performance of the proposed method is quite close to that of the state-of-the-art Gaussian scale mixture (GSM) method, but with much less complexity.