Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems

被引:41
作者
de Almeida, JPM [1 ]
Pereira, OJBA [1 ]
机构
[1] Univ Tecn Lisboa, Dept Civil Engn, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
local quantities; error estimation; dual analysis; adaptive refinement; verification;
D O I
10.1016/j.cma.2004.09.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When local quantities are computed using the principle of virtual work, dual analysis, which provides an upper bound of the global error, may also be applied to the virtual problem. Greenberg and Washizu proposed alternative approaches to combine the global error bounds of the real and virtual problems, providing upper bounds of the local error. It is shown in this paper that optimising Greenberg's approach corresponds to using Washizu's approach, which, in turn, may be further improved. These approaches are used to provide finite element error indicators for adaptive refinement. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 296
页数:18
相关论文
共 37 条
[1]  
Albanese R, 1998, INT J NUMER METH ENG, V42, P499, DOI 10.1002/(SICI)1097-0207(19980615)42:3<499::AID-NME368>3.0.CO
[2]  
2-O
[3]  
ALMEIDA J, 2003, ADAPTIVE MODELING SI
[4]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[5]   A-POSTERIORI ESTIMATION AND ADAPTIVE-CONTROL OF THE POLLUTION ERROR IN THE H-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (24) :4207-4235
[6]   Guaranteed computable bounds for the exact error in the finite element solution Part I: One-dimensional model problem [J].
Babuska, I ;
Strouboulis, T ;
Gangaraj, SK .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 176 (1-4) :51-79
[7]   THE POST-PROCESSING APPROACH IN THE FINITE-ELEMENT METHOD .3. A POSTERIORI ERROR-ESTIMATES AND ADAPTIVE MESH SELECTION [J].
BABUSKA, I ;
MILLER, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (12) :2311-2324
[9]   ALTERNATIVE APPROACH TO THE FORMULATION OF HYBRID EQUILIBRIUM FINITE-ELEMENTS [J].
DEALMEIDA, JPM ;
DEFREITAS, JAT .
COMPUTERS & STRUCTURES, 1991, 40 (04) :1043-1047
[10]   CONTINUITY CONDITIONS FOR FINITE-ELEMENT ANALYSIS OF SOLIDS [J].
DEALMEIDA, JPM ;
DEFREITAS, JAT .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (04) :845-853