Guide to Metabolomics Analysis: A Bioinformatics Workflow

被引:124
作者
Chen, Yang [1 ,2 ]
Li, En-Min [1 ,2 ]
Xu, Li-Yan [1 ,3 ]
机构
[1] Shantou Univ, Key Lab Mol Biol High Canc Incidence Coastal Chao, Med Coll, Shantou 515041, Peoples R China
[2] Shantou Univ, Dept Biochem & Mol Biol, Med Coll, Shantou 515041, Peoples R China
[3] Shantou Univ, Inst Oncol Pathol, Guangdong Prov Key Lab Infect Dis & Mol Immunopat, Med Coll, Shantou 515041, Peoples R China
基金
美国国家科学基金会;
关键词
metabolomics; metabolomics analysis tools; metabolic pathways summary; multi-omics integration algorithms; MAGNETIC-RESONANCE-SPECTROSCOPY; MASS-SPECTROMETRY DATA; HEPATOCELLULAR-CARCINOMA; ALZHEIMERS-DISEASE; CEREBROSPINAL-FLUID; BLADDER-CANCER; PLASMA; ACID; METABOANALYST; ASSOCIATION;
D O I
10.3390/metabo12040357
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach's ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis.
引用
收藏
页数:20
相关论文
共 125 条
  • [1] Plasma Acylcarnitine Profiles Suggest Incomplete Long-Chain Fatty Acid β-Oxidation and Altered Tricarboxylic Acid Cycle Activity in Type 2 Diabetic African-American Women
    Adams, Sean H.
    Hoppel, Charles L.
    Lok, Kerry H.
    Zhao, Ling
    Wong, Scott W.
    Minkler, Paul E.
    Hwang, Daniel H.
    Newman, John W.
    Garvey, W. Timothy
    [J]. JOURNAL OF NUTRITION, 2009, 139 (06) : 1073 - 1081
  • [2] Agrawal S, 2019, METHODS MOL BIOL, V1978, P301, DOI 10.1007/978-1-4939-9236-2_19
  • [3] Guidelines for the design, analysis and interpretation of 'omics' data: focus on human endometrium
    Altmaee, Signe
    Esteban, Francisco J.
    Stavreus-Evers, Anneli
    Simon, Carlos
    Giudice, Linda
    Lessey, Bruce A.
    Horcajadas, Jose A.
    Macklon, Nick S.
    D'Hooghe, Thomas
    Campoy, Cristina
    Fauser, Bart C.
    Salamonsen, Lois A.
    Salumets, Andres
    [J]. HUMAN REPRODUCTION UPDATE, 2014, 20 (01) : 12 - 28
  • [4] Antonelli J., 2019, METABOLITES, V9, P143, DOI DOI 10.3390/metabo9070143
  • [5] Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression
    Bai, Bing
    Wang, Xusheng
    Li, Yuxin
    Chen, Ping-Chung
    Yu, Kaiwen
    Dey, Kaushik Kumar
    Yarbro, Jay M.
    Han, Xian
    Lutz, Brianna M.
    Rao, Shuquan
    Jiao, Yun
    Sifford, Jeffrey M.
    Han, Jonghee
    Wang, Minghui
    Tan, Haiyan
    Shaw, Timothy, I
    Cho, Ji-Hoon
    Zhou, Suiping
    Wang, Hong
    Niu, Mingming
    Mancieri, Ariana
    Messler, Kaitlynn A.
    Sun, Xiaojun
    Wu, Zhiping
    Pagala, Vishwajeeth
    High, Anthony A.
    Bi, Wenjian
    Zhang, Hui
    Chi, Hongbo
    Haroutunian, Vahram
    Zhang, Bin
    Beach, Thomas G.
    Yu, Gang
    Peng, Junmin
    [J]. NEURON, 2020, 105 (06) : 975 - +
  • [6] Getting the right answers: understanding metabolomics challenges
    Beisken, Stephan
    Eiden, Michael
    Salek, Reza M.
    [J]. EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2015, 15 (01) : 97 - 109
  • [7] Lipid metabolic reprogramming in cancer cells
    Beloribi-Djefaflia, S.
    Vasseur, S.
    Guillaumond, F.
    [J]. ONCOGENESIS, 2016, 5 : e189 - e189
  • [8] Metabolic Signatures of Cultured Human Adipocytes from Metabolically Healthy versus Unhealthy Obese Individuals
    Boehm, Anja
    Halama, Anna
    Meile, Tobias
    Zdichavsky, Marty
    Lehmann, Rainer
    Weigert, Cora
    Fritsche, Andreas
    Stefan, Norbert
    Koenigsrainer, Alfred
    Haering, Hans-Ulrich
    de Angelis, Martin Hrabe
    Adamski, Jerzy
    Staiger, Harald
    [J]. PLOS ONE, 2014, 9 (04):
  • [9] Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria
    Burnap, Robert L.
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2015, 3
  • [10] Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results
    Castle, Arthur L.
    Fiehn, Oliver
    Kaddurah-Daouk, Rima
    Lindon, John C.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2006, 7 (02) : 159 - 165