A class of variable mesh spline in compression methods for singularly perturbed two point singular boundary value problems

被引:33
作者
Mohanty, RK [1 ]
Jha, N
机构
[1] Univ Delhi, Dept Math, Fac Math Sci, Delhi 110007, India
[2] Guru Gobind Singh Indraprastha Univ, Dept Appl Sci, Bharati Vidyapeeths Coll Engn, New Delhi 110063, India
关键词
variable mesh; singular perturbation; singular problem; spline in compression; RMS errors;
D O I
10.1016/j.amc.2004.09.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report numerical techniques for a class of singularly perturbed two point singular boundary value problems on a non-uniform mesh using spline in compression. The proposed methods are stable everywhere in the solution region including the vicinity of the singularity. Error analysis of a method is briefly discussed. Numerical results are provided to illustrate the proposed methods. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:704 / 716
页数:13
相关论文
共 12 条
[1]  
BERGER AE, 1981, MATH COMPUT, V37, P79, DOI 10.1090/S0025-5718-1981-0616361-0
[2]  
ILIN AM, 1969, MATH NOTES, V6, P596, DOI DOI 10.1007/BF01093706
[3]   SPLINE FUNCTION APPROXIMATION IN DISCRETE MECHANICS [J].
JAIN, MK .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1979, 14 (5-6) :341-345
[4]   Numerical solution of singularly perturbed two point boundary value problems by spline in compression [J].
Kadalbajoo, MK ;
Patidar, KC .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 77 (02) :263-283
[5]  
KELLOGG RB, 1978, MATH COMPUT, V32, P1025, DOI 10.1090/S0025-5718-1978-0483484-9
[6]  
Kevorkian J. K., 1996, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-3968-0
[7]   NUMERICAL-METHODS FOR SINGULAR PERTURBATION PROBLEMS [J].
KREISS, B ;
KREISS, HO .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (02) :262-276
[8]   Spline in compression method for the numerical solution of singularly perturbed two-point singular boundary-value problems [J].
Mohanty, RK ;
Jha, N ;
Evans, DJ .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (05) :615-627
[9]  
O'Malley RE., 1991, SINGULAR PERTURBATIO
[10]  
STOJANOVIC M, 1987, PUBLICATIONS I MATH, V42, P155