Bi-nanofillers integrated into PEO-based electrolyte for high-performance solid-state Li metal batteries

被引:18
作者
Yin, Junying [1 ,2 ]
Xu, Xin [1 ]
Jiang, Sen [1 ]
Lei, Yue [1 ]
Gao, Yunfang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Techn, Hangzhou 310014, Peoples R China
[2] Binzhou Univ, Coll Chem Engn & Safety, Engn Res Ctr Ind Wastewater Treatment & Reuse Shan, Binzhou Key Lab Appl Electrochem, Binzhou 256603, Peoples R China
关键词
Solid-state Li metal batteries; Polymer solid-state electrolytes; Boron nitride; Aramid nanofiber; Lithium dendrites; HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTES; LITHIUM BATTERIES; COMPOSITES; CHALLENGES; INTERFACES; SOLVATION; PROGRESS; DESIGN; ANODES;
D O I
10.1016/j.jpowsour.2022.232139
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium metal batteries (SSLMBs) with high safety and high energy densities draw widespread attention in recent years. Nevertheless, the intrinsic defects of the solid-state electrolyte (SSE) such as the poor compatibility with electrodes and low ionic conductivity hamper the application of SSMLBs. Herein, we intro-duce rigid two-dimensional hexagonal boron nitride (BN) nanosheets and flexible One-dimensional aramid nanofibers (ANFs) as bi-nanofillers into the polyethylene oxide (PEO)-based SSEs to fabricate a composite solid-state electrolyte (CSE) ANF-PEO-BN with network structure boosting the comprehensive performance of SSMLBs. ANF and BN with special properties and structures are prone to be dispersed homogeneously in the PEO matrix to build the ANF-PEO-BN electrolyte, whose rigid and flexible network structure ensures the formation of Li den-drites inhibited. Furthermore, the dissociation of lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) is pro-moted and more ion transport channels are provided due to the strong affinity between Lewis acid centers of ANF/BN and Li+/TFSI-. As a result, the LiFePO4/Li batteries deliver high-capacity retention of 86% after 500 cycles and Li/Li cells stably cycle beyond 3300 h with small overpotential of 10 mV at 0.1 mA cm-2/0.2 mAh cm- 2.
引用
收藏
页数:10
相关论文
共 58 条
[1]   Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage [J].
An, Yongling ;
Tian, Yuan ;
Wei, Chuanliang ;
Tao, Yuan ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
NANO TODAY, 2021, 37
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte [J].
Bai, Songyan ;
Sun, Yang ;
Yi, Jin ;
He, Yibo ;
Qiao, Yu ;
Zhou, Haoshen .
JOULE, 2018, 2 (10) :2117-2132
[4]   Preparation of 2D material dispersions and their applications [J].
Cai, Xingke ;
Luo, Yuting ;
Liu, Bilu ;
Cheng, Hui-Ming .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (16) :6224-6266
[5]   Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery [J].
Chen, Hao ;
Adekoya, David ;
Hencz, Luke ;
Ma, Jun ;
Chen, Su ;
Yan, Cheng ;
Zhao, Huijun ;
Cui, Guanglei ;
Zhang, Shanqing .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)
[6]   Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Li, Qin ;
Yang, Hongbin ;
Khoshi, M. Reza ;
Xu, Yaobin ;
Hwang, Sooyeon ;
Chen, Long ;
Ji, Xiao ;
Yang, Chongyin ;
He, Huixin ;
Wang, Chongmin ;
Garfunkel, Eric ;
Su, Dong ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE ENERGY, 2020, 5 (05) :386-397
[7]   Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries [J].
Chen, Long ;
Li, Wenxin ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (28)
[8]   The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons [J].
Chen, Renjie ;
Qu, Wenjie ;
Guo, Xing ;
Li, Li ;
Wu, Feng .
MATERIALS HORIZONS, 2016, 3 (06) :487-516
[9]   Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications [J].
Chen, Shuru ;
Dai, Fang ;
Cai, Mei .
ACS ENERGY LETTERS, 2020, 5 (10) :3140-3151
[10]   Advanced triboelectric nanogenerators based on low-dimension carbon materials: A review [J].
Cheng, Kuan ;
Wallaert, Samuel ;
Ardebili, Haleh ;
Karim, Alamgir .
CARBON, 2022, 194 :81-103