On finite-dimensional normed spaces over Cp

被引:0
作者
Kubzdela, A [1 ]
机构
[1] Poznan Tech Univ, Inst Civil Engn, PL-61138 Poznan, Poland
来源
Ultrametric Functional Analysis | 2005年 / 384卷
关键词
finite-dimensional; non-Archimedean normal spaces; non-Archimedean valued fields;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a non-Archimedean, complete valued field which is not spherically complete. We study different properties of centered sequences of 'closed' balls with empty intersections in such K. We prove that if K = C-p there exists a centered sequence of 'closed' balls in K-n such that for every linear submanifold H in K-n only finitely many balls intersect H. As an application, giving a few examples of finite-dimensional normed spaces over C-p, we show that there is a correspondence between some properties of centered sequences of 'closed' balls in C-p with empty intersections and the presence of orthogonal sequences in finite-dimensional normed spaces.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 6 条
[1]  
KUBZDELA A, IN PRESS INDAG MATH
[2]  
Perez-Garcia C., 1993, 9313 KATH U NIJM
[3]   FINITE-DIMENSIONAL SUBSPACES OF THE P-ADIC SPACE L-INFINITY [J].
PEREZGARCIA, C ;
SCHIKHOF, WH .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (03) :360-365
[4]  
van Rooij A. C. M., 1978, Non-Archimedean functional analysis
[5]  
van Rooij A.C.M., 1976, 7633 KATH U NIJM
[6]  
VANROOIJ ACM, 1992, LECT NOTES PURE APPL, V137, P209