Scaffolds Based Bone Tissue Engineering: The Role of Chitosan

被引:247
作者
Costa-Pinto, Ana Rita [1 ,2 ]
Reis, Rui L. [1 ,2 ]
Neves, Nuno M. [1 ,2 ]
机构
[1] Univ Minho, Res Grp Biomat Biodegradables & Biomimet 3Bs, Dept Polymer Engn, Headquarters European Inst Excellence Tissue Engn, P-4806909 Caldas Das Taipas, Guimaraes, Portugal
[2] ICVS 3Bs PT Govt Associate Lab, Braga, Portugal
关键词
MARROW STROMAL CELLS; MESENCHYMAL STEM-CELLS; FIBER-MESH SCAFFOLDS; BIPHASIC CALCIUM-PHOSPHATE; N-ACETYLATED CHITOSANS; CRITICAL-SIZE DEFECTS; IN-VITRO DEGRADATION; GROWTH-FACTOR; OSTEOGENIC DIFFERENTIATION; COMPOSITE SCAFFOLDS;
D O I
10.1089/ten.teb.2010.0704
中图分类号
Q813 [细胞工程];
学科分类号
摘要
As life expectancy increases, malfunction or loss of tissue caused by injury or disease leads to reduced quality of life in many patients at significant socioeconomic cost. Even though major progress has been made in the field of bone tissue engineering, present therapies, such as bone grafts, still have limitations. Current research on biodegradable polymers is emerging, combining these structures with osteogenic cells, as an alternative to autologous bone grafts. Different types of biodegradable materials have been proposed for the preparation of three-dimensional porous scaffolds for bone tissue engineering. Among them, natural polymers are one of the most attractive options, mainly due to their similarities with extracellular matrix, chemical versatility, good biological performance, and inherent cellular interactions. In this review, special attention is given to chitosan as a biomaterial for bone tissue engineering applications. An extensive literature survey was performed on the preparation of chitosan scaffolds and their in vitro biological performance as well as their potential to facilitate in vivo bone regeneration. The present review also aims to offer the reader a general overview of all components needed to engineer new bone tissue. It gives a brief background on bone biology, followed by an explanation of all components in bone tissue engineering, as well as describing different tissue engineering strategies. Moreover, also discussed are the typical models used to evaluate in vitro functionality of a tissue-engineered construct and in vivo models to assess the potential to regenerate bone tissue are discussed.
引用
收藏
页码:331 / 347
页数:17
相关论文
共 261 条
[21]   Microfabrication of three-dimensional engineered scaffolds [J].
Borenstein, Jeffrey T. ;
Weinberg, Eli J. ;
Orrick, Brian K. ;
Sundback, Cathryn ;
Kaazempur-Mofrad, Mohammad R. ;
Vacanti, Joseph P. .
TISSUE ENGINEERING, 2007, 13 (08) :1837-1844
[22]   Role of material surfaces in regulating bone and cartilage cell response [J].
Boyan, BD ;
Hummert, TW ;
Dean, DD ;
Schwartz, Z .
BIOMATERIALS, 1996, 17 (02) :137-146
[23]   Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography [J].
Boyan, BD ;
Bonewald, LF ;
Paschalis, EP ;
Lohmann, CH ;
Rosser, J ;
Cochran, DL ;
Dean, DD ;
Schwartz, Z ;
Boskey, AL .
CALCIFIED TISSUE INTERNATIONAL, 2002, 71 (06) :519-529
[24]   CELLULAR AND MOLECULAR EVENTS DURING EMBRYONIC BONE-DEVELOPMENT [J].
BRUDER, SP ;
CAPLAN, AI .
CONNECTIVE TISSUE RESEARCH, 1989, 20 (1-4) :65-71
[25]   The integration of chitosan-coated titanium in bone:: An in vivo study in rabbits [J].
Bumgardner, Joel D. ;
Chesnutt, Betsy M. ;
Yuan, Youling ;
Yang, Yunzhi ;
Appleford, Mark ;
Oh, Sunho ;
McLaughlin, Ronald ;
Elder, Steven H. ;
Ong, Joo L. .
IMPLANT DENTISTRY, 2007, 16 (01) :66-79
[26]   Biomaterial developments for bone tissue engineering [J].
Burg, KJL ;
Porter, S ;
Kellam, JF .
BIOMATERIALS, 2000, 21 (23) :2347-2359
[27]   Surface modification of titanium thin film with chitosan via electrostatic self-assembly technique and its influence on osteoblast growth behavior [J].
Cai, Kaiyong ;
Hu, Yan ;
Jandt, Klaus D. ;
Wang, Yuanliang .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2008, 19 (02) :499-506
[28]   Surface modification of poly (D,L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro [J].
Cai, KY ;
Yao, KD ;
Cui, YL ;
Lin, SB ;
Yang, ZM ;
Li, XQ ;
Xie, HQ ;
Qing, TW ;
Luo, J .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 60 (03) :398-404
[29]   Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system [J].
Cai, Xiaoxiao ;
Lin, Yunfeng ;
Ou, Guomin ;
Luo, En ;
Man, Yi ;
Yuan, Quan ;
Gong, Ping .
CELL BIOLOGY INTERNATIONAL, 2007, 31 (08) :776-783
[30]   Osteoblastic cells regulate the haematopoietic stem cell niche [J].
Calvi, LM ;
Adams, GB ;
Weibrecht, KW ;
Weber, JM ;
Olson, DP ;
Knight, MC ;
Martin, RP ;
Schipani, E ;
Divieti, P ;
Bringhurst, FR ;
Milner, LA ;
Kronenberg, HM ;
Scadden, DT .
NATURE, 2003, 425 (6960) :841-846