Ziv-Zakai Bound for Compressive Time Delay Estimation

被引:19
作者
Zhang, Zongyu [1 ]
Shi, Zhiguo [1 ,2 ]
Zhou, Chengwei [1 ]
Yan, Chenggang [3 ]
Gu, Yujie [4 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Int Joint Innovat Ctr, Haining 314400, Peoples R China
[3] Hangzhou Dianzi Univ, Dept Automat, Hangzhou 310018, Peoples R China
[4] Aptiv, Elect & Safety, Agoura Hills, CA 91301 USA
基金
中国国家自然科学基金;
关键词
Bayesian estimation; compressive sensing; mean square error; minimum probability of error; time delay estimation; Ziv-Zakai bound; PARAMETER-ESTIMATION; ESTIMATION ERROR; BAYESIAN BOUNDS; MIMO RADAR; OPTIMIZATION; INFORMATION;
D O I
10.1109/TSP.2022.3181459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive radar receiver can keep a good balance between sub-Nyquist sampling and high resolution. To evaluate the performance of compressive time delay estimators, Cramer-Rao bound (CRB) has been derived for lower bounding the mean square error (MSE), which, unfortunately, is a local bound being tight in the asymptotic region only. In this paper, we use the Ziv-Zakai bound (ZZB) methodology to develop a Bayesian MSE bound on compressive time delay estimation by incorporating the a priori information of the unknown time delay. Specifically, we respectively derive deterministic ZZB and stochastic ZZB as functions of compressive sensing (CS) kernel, where there is no restriction on CS kernels and Gaussian noise colors. Simulation results demonstrate that compared with Bayesian CRB, ZZB provides a better performance prediction for minimum MSE estimator of compressive time delay estimation over a wide range of signal-to-noise ratios, where different CS kernels, compression ratios, a priori distributions and Gaussian noise colors are tested.
引用
收藏
页码:4006 / 4019
页数:14
相关论文
共 55 条
  • [1] Amin M, 2015, COMPRESSIVE SENSING FOR URBAN RADAR, P1
  • [2] Asymptotic Achievability of the Cramer-Rao Bound for Noisy Compressive Sampling
    Babadi, Behtash
    Kalouptsidis, Nicholas
    Tarokh, Vahid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (03) : 1233 - 1236
  • [3] Bayesian Estimation in the Presence of Deterministic Nuisance Parameters-Part I: Performance Bounds
    Bar, Shahar
    Tabrikian, Joseph
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (24) : 6632 - 6646
  • [4] Baraniuk Richard, 2007, 2007 IEEE Radar Conference, P128, DOI 10.1109/RADAR.2007.374203
  • [5] Extended Ziv-Zakai lower bound for vector parameter estimation
    Bell, KL
    Steinberg, Y
    Ephraim, Y
    VanTrees, HL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) : 624 - 637
  • [6] Explicit Ziv-Zakai lower bound for bearing estimation
    Bell, KL
    Ephraim, Y
    VanTrees, HL
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (11) : 2810 - 2824
  • [7] BOUNDS ON ERROR IN SIGNAL PARAMETER ESTIMATION
    BELLINI, S
    TARTARA, G
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1974, 22 (03) : 340 - 342
  • [8] LOWER BOUND ON ESTIMATION ERROR FOR CERTAIN DIFFUSION PROCESSES
    BOBROVSKY, BZ
    ZAKAI, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (01) : 45 - 52
  • [9] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [10] IMPROVED LOWER BOUNDS ON SIGNAL PARAMETER ESTIMATION
    CHAZAN, D
    ZAKAI, M
    ZIV, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (01) : 90 - 93