AN ENERGY STABLE AND CONVERGENT FINITE-DIFFERENCE SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION

被引:276
作者
Wang, C. [1 ]
Wise, S. M. [2 ]
机构
[1] Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Phase Field Crystal; Modified Phase Field Crystal; finite-difference methods; stability; nonlinear partial differential equations;
D O I
10.1137/090752675
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an unconditionally energy stable finite difference scheme for the Modified Phase Field Crystal equation, a generalized damped wave equation for which the usual Phase Field Crystal equation is a special degenerate case. The method is based on a convex splitting of a discrete pseudoenergy and is semi-implicit. The equation at the implicit time level is nonlinear but represents the gradient of a strictly convex function and is thus uniquely solvable, regardless of time step-size. We present a local-in-time error estimate that ensures the pointwise convergence of the scheme.
引用
收藏
页码:945 / 969
页数:25
相关论文
共 16 条
[1]   Nucleation and growth by a phase field crystal (PFC) model [J].
Backofen, R. ;
Raetz, A. ;
Voigt, A. .
PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (11) :813-820
[2]   A 2ND ORDER FINITE DIFFERENCE ANALOG OF FIRST BIHARMONIC BOUNDARY VALUE PROBLEM [J].
BRAMBLE, JH .
NUMERISCHE MATHEMATIK, 1966, 9 (03) :236-&
[3]  
CHEN W, J SCI COMPUT UNPUB
[4]   Modeling elasticity in crystal growth [J].
Elder, KR ;
Katakowski, M ;
Haataja, M ;
Grant, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (24) :2457011-2457014
[5]   Unconditionally gradient stable time marching the Cahn-Hilliard equation [J].
Eyre, DJ .
COMPUTATIONAL AND MATHEMATICAL MODELS OF MICROSTRUCTURAL EVOLUTION, 1998, 529 :39-46
[6]  
Furihata D, 2001, NUMER MATH, V87, P675, DOI 10.1007/s002110000212
[7]   Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation [J].
Hu, Z. ;
Wise, S. M. ;
Wang, C. ;
Lowengrub, J. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (15) :5323-5339
[8]   Dynamic density functional theory of fluids [J].
Marconi, UMB ;
Tarazona, P .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (16) :8032-8044
[9]   Using the phase-field crystal method in the multi-scale modeling of microstructure evolution [J].
Provatas, N. ;
Dantzig, J. A. ;
Athreya, B. ;
Chan, P. ;
Stefanovic, P. ;
Goldenfeld, N. ;
Elder, K. R. .
JOM, 2007, 59 (07) :83-90
[10]  
SHEN J, SIAM J NUMER A UNPUB