Steklov Spectral Geometry for Extrinsic Shape Analysis

被引:14
|
作者
Wang, Yu [1 ]
Ben-Chen, Mirela [2 ]
Polterovich, Iosif [3 ]
Solomon, Justin [1 ]
机构
[1] MIT, 32 Vassar St, Cambridge, MA 02139 USA
[2] Technion Israel Inst Technol, Haifa, Israel
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
来源
ACM TRANSACTIONS ON GRAPHICS | 2019年 / 38卷 / 01期
基金
欧洲研究理事会; 加拿大自然科学与工程研究理事会; 以色列科学基金会; 美国国家科学基金会;
关键词
Shape analysis; geometry processing; Steklov eigenvalue problem; Dirichlet-to-Neumann operator; BOUNDARY-ELEMENT METHOD; OPERATOR; SEGMENTATION; DIFFRACTION;
D O I
10.1145/3152156
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose using the Dirichlet-to-Neumann operator as an extrinsic alternative to the Laplacian for spectral geometry processing and shape analysis. Intrinsic approaches, usually based on the Laplace-Beltrami operator, cannot capture the spatial embedding of a shape up to rigid motion, and many previous extrinsic methods lack theoretical justification. Instead, we consider the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable property of this operator is that it completely encodes volumetric geometry. We use the boundary element method (BEM) to discretize the operator, accelerated by hierarchical numerical schemes and preconditioning; this pipeline allows us to solve eigenvalue and linear problems on large-scale meshes despite the density of the Dirichlet-to-Neumann discretization. We further demonstrate that our operators naturally fit into existing frameworks for geometry processing, making a shift from intrinsic to extrinsic geometry as simple as substituting the Laplace Beltrami operator with the Dirichlet-to-Neumann operator.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Spectral geometry of the Steklov problem (survey article)
    Girouard, Alexandre
    Polterovich, Iosif
    JOURNAL OF SPECTRAL THEORY, 2017, 7 (02) : 321 - 359
  • [2] STAR - Laplacian Spectral Kernels and Distances for Geometry Processing and Shape Analysis
    Patane, Giuseppe
    COMPUTER GRAPHICS FORUM, 2016, 35 (02) : 599 - 624
  • [3] Spectral invariants of the perturbed polyharmonic Steklov problem
    Liu, Genqian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [4] The Spectral Element Method for the Steklov Eigenvalue Problem
    Li, Yanjun
    Yang, Yidu
    Bi, Hai
    MATERIALS SCIENCE, MACHINERY AND ENERGY ENGINEERING, 2014, 853 : 631 - 635
  • [5] Spectral Galerkin approximation and rigorous error analysis for the Steklov eigenvalue problem in circular domain
    Tan, Ting
    An, Jing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (10) : 3764 - 3778
  • [6] An inequality for the Steklov spectral zeta function of a planar domain
    Jollivet, Alexandre
    Sharafutdinov, Vladimir
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 271 - 296
  • [7] An automated, geometry-based method for hippocampal shape and thickness analysis
    Diers, Kersten
    Baumeister, Hannah
    Jessen, Frank
    Duezel, Emrah
    Berron, David
    Reuter, Martin
    NEUROIMAGE, 2023, 276
  • [8] A few shape optimization results for a biharmonic Steklov problem
    Buoso, Davide
    Provenzano, Luigi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1778 - 1818
  • [9] Hamiltonian Operator for Spectral Shape Analysis
    Choukroun, Yoni
    Shtern, Alon
    Bronstein, Alex
    Kimmel, Ron
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (02) : 1320 - 1331
  • [10] Information Geometry for Landmark Shape Analysis: Unifying Shape Representation and Deformation
    Peter, Adrian M.
    Rangarajan, Anand
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (02) : 337 - 350