Magnesium-Dependent Electrical Actuation and Stability of DNA Origami Rods

被引:13
作者
Kroener, Felix [1 ,2 ]
Traxler, Lukas [2 ]
Heerwig, Andreas [3 ]
Rant, Ulrich [2 ]
Mertig, Michael [1 ,3 ]
机构
[1] Tech Univ Dresden, Phys Chem Mess & Sensortech, D-01062 Dresden, Germany
[2] Dynam Biosensors GmbH, D-82152 Planegg, Germany
[3] Kurt Schwabe Inst Mess & Sensortech eV Meinsberg, D-04736 Waldheim, Germany
关键词
DNA origami; electrical actuation of DNA; origami stability; switchSENSE; biosensors; NANOSTRUCTURES;
D O I
10.1021/acsami.8b18611
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dynamic methods of biosensing based on electrical actuation of surface-tethered nanolevers require the use of levers whose movement in ionic liquids is well controllable and stable. In particular, mechanical integrity of the nanolevers in a wide range of ionic strengths will enable to meet the chemical conditions of a large variety of applications where the specific binding of biomolecular analytes is analyzed. Herein, we study the electrically induced switching behavior of different rodlike DNA origami nanolevers and compare to the actuation of simply double-stranded DNA nanolevers. Our measurements reveal a significantly stronger response of the DNA origami to switching of electrode potential, leading to a smaller potential change necessary to actuate the origami and subsequently to a long-term stable movement. Dynamic measurements in buffer solutions with different Mg2+ contents show that the levers do not disintegrate even at very low ion concentrations and constant switching stress and thus provide stable actuation performance. The latter will pave the way for many new applications without largely restricting application-specific environments.
引用
收藏
页码:2295 / 2301
页数:7
相关论文
共 31 条
  • [1] Block Copolymer Micellization as a Protection Strategy for DNA Origami
    Agarwal, Nayan P.
    Matthies, Michael
    Guer, Fatih N.
    Osada, Kensuke
    Schmidt, Thorsten L.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (20) : 5460 - 5464
  • [2] Controlling the surface density of DNA on gold by electrically induced desorption
    Arinaga, Kenji
    Rant, Ulrich
    Knezevic, Jelena
    Pringsheim, Erika
    Tornow, Marc
    Fujita, Shozo
    Abstreiter, Gerhard
    Yokoyama, Naoki
    [J]. BIOSENSORS & BIOELECTRONICS, 2007, 23 (03) : 326 - 331
  • [3] DNA Nanotechnology: A foundation for Programmable Nanoscale Materials
    Bathe, Mark
    Rothemund, Paul W. K.
    [J]. MRS BULLETIN, 2017, 42 (12) : 882 - 888
  • [4] Mechanical design of DNA nanostructures
    Castro, Carlos E.
    Su, Hai-Jun
    Marras, Alexander E.
    Zhou, Lifeng
    Johnson, Joshua
    [J]. NANOSCALE, 2015, 7 (14) : 5913 - 5921
  • [5] Chance R.R., 2007, Advances in Chemical Physics, P1
  • [6] Self-assembly of DNA into nanoscale three-dimensional shapes
    Douglas, Shawn M.
    Dietz, Hendrik
    Liedl, Tim
    Hoegberg, Bjoern
    Graf, Franziska
    Shih, William M.
    [J]. NATURE, 2009, 459 (7245) : 414 - 418
  • [7] DNA-Directed Artificial Light-Harvesting Antenna
    Dutta, Palash K.
    Varghese, Reji
    Nangreave, Jeanette
    Lin, Su
    Yan, Hao
    Liu, Yan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) : 11985 - 11993
  • [8] Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering
    Fischer, Stefan
    Hartl, Caroline
    Frank, Kilian
    Raedler, Joachim O.
    Liedl, Tim
    Nickel, Bert
    [J]. NANO LETTERS, 2016, 16 (07) : 4282 - 4287
  • [9] Sequence-programmable covalent bonding of designed DNA assemblies
    Gerling, Thomas
    Kube, Massimo
    Kick, Benjamin
    Dietz, Hendrik
    [J]. SCIENCE ADVANCES, 2018, 4 (08):
  • [10] Addressing the Instability of DNA Nanostructures in Tissue Culture
    Hahn, Jaeseung
    Wickham, Shelley F. J.
    Shih, William M.
    Perrault, Steven D.
    [J]. ACS NANO, 2014, 8 (09) : 8765 - 8775