Quantum Variational Optimization of Ramsey Interferometry and Atomic Clocks

被引:81
作者
Kaubruegger, Raphael [1 ,2 ]
Vasilyev, Denis V. [1 ,2 ]
Schulte, Marius [3 ]
Hammerer, Klemens [3 ]
Zoller, Peter [1 ,2 ]
机构
[1] Univ Innsbruck, Ctr Quantum Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[3] Leibniz Univ Hannover, Inst Theoret Phys, Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
关键词
ENTANGLEMENT; GENERATION; STABILITY; STATES; NOISE;
D O I
10.1103/PhysRevX.11.041045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss quantum variational optimization of Ramsey interferometry with ensembles of N entangled atoms, and its application to atomic clocks based on a Bayesian approach to phase estimation. We identify best input states and generalized measurements within a variational approximation for the corresponding entangling and decoding quantum circuits. These circuits are built from basic quantum operations available for the particular sensor platform, such as one-axis twisting, or finite range interactions. Optimization is defined relative to a cost function, which in the present study is the Bayesian mean squared error of the estimated phase for a given prior distribution; i.e., we optimize for a finite dynamic range of the interferometer. In analogous variational optimizations of optical atomic clocks, we use the Allan deviation for a given Ramsey interrogation time as the relevant cost function for the long-term instability. Remarkably, even low-depth quantum circuits yield excellent results that closely approach the fundamental quantum limits for optimal Ramsey interferometry and atomic clocks. The quantum metrological schemes identified here are readily applicable to atomic clocks based on optical lattices, tweezer arrays, or trapped ions. While in the present work variationally optimized circuits are found with classical simulations, optimization can also be performed "on" the (physical) quantum sensor, also in regimes not accessible to classical computations and in the presence of imperfections.
引用
收藏
页数:21
相关论文
共 112 条
[1]   Phase magnification by two-axis countertwisting for detection-noise robust interferometry [J].
Anders, Fabian ;
Pezze, Luca ;
Smerzi, Augusto ;
Klempt, Carsten .
PHYSICAL REVIEW A, 2018, 97 (04)
[2]   Stability of atomic clocks based on entangled atoms -: art. no. 230801 [J].
André, A ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :230801-1
[3]  
[Anonymous], 1982, Probabilistic and Statistical Aspects of Quantum Theory
[4]   Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit [J].
Appel, J. ;
Windpassinger, P. J. ;
Oblak, D. ;
Hoff, U. B. ;
Kjaergaard, N. ;
Polzik, E. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) :10960-10965
[5]   CHARACTERIZATION OF FREQUENCY STABILITY [J].
BARNES, JA ;
CHI, AR ;
CUTLER, LS ;
HEALEY, DJ ;
LEESON, DB ;
MCGUNIGAL, TE ;
MULLEN, JA ;
SMITH, WL ;
SYDNOR, RL ;
VESSOT, RFC ;
WINKLER, GMR .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1971, IM20 (02) :105-+
[6]   Deterministic generation of multiparticle entanglement by quantum Zeno dynamics [J].
Barontini, Giovanni ;
Hohmann, Leander ;
Haas, Florian ;
Esteve, Jerome ;
Reichel, Jakob .
SCIENCE, 2015, 349 (6254) :1317-1321
[7]  
Beckey J. L., ARXIV201010488
[8]   Integrated Mach-Zehnder interferometer for Bose-Einstein condensates [J].
Berrada, T. ;
van Frank, S. ;
Buecker, R. ;
Schumm, T. ;
Schaff, J. -F. ;
Schmiedmayer, J. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Optimal states and almost optimal adaptive measurements for quantum interferometry [J].
Berry, DW ;
Wiseman, HM .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5098-5101
[10]   An optical lattice clock with accuracy and stability at the 10-18 level [J].
Bloom, B. J. ;
Nicholson, T. L. ;
Williams, J. R. ;
Campbell, S. L. ;
Bishof, M. ;
Zhang, X. ;
Zhang, W. ;
Bromley, S. L. ;
Ye, J. .
NATURE, 2014, 506 (7486) :71-+