Complexity penalized M-estimation: Fast computation

被引:61
|
作者
Friedrich, F. [2 ]
Kempe, A. [1 ]
Liebscher, V. [3 ]
Winkler, G. [1 ]
机构
[1] GSF Natl Res Ctr Environm & Hlth, IBB Inst Biomath & Biometry, D-85758 Oberschleissheim, Germany
[2] ETH Zentrum RZ H9, CH-8092 Zurich, Switzerland
[3] Univ Greifswald, D-17487 Greifswald, Germany
关键词
Blake-Zisserman functional; complexity penalized variational problems; edge-preserving smoothing; Potts model; regularization; segmentation; time series;
D O I
10.1198/106186008X285591
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present very fast algorithms for the exact computation of estimators for time series, based on complexity penalized log-likelihood or M-functions. The algorithms apply to a wide range of functionals with morphological constraints, in particular to Potts or Blake-Zisserman functionals. The latter are the discrete versions of the celebrated Mumford-Shah functionals. All such functionals contain model parameters. Our algorithms allow for optimization not only for each separate parameter, but even for all parameters simultaneously. This allows for the examination of the models in the sense of a family approach. The algorithms are accompanied by a series of illustrative examples from molecular biology.
引用
收藏
页码:201 / 224
页数:24
相关论文
共 50 条
  • [1] Complexity penalized least squares estimators: Analytical results
    Wittich, O.
    Kempe, A.
    Winkler, G.
    Liebscher, V.
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (04) : 582 - 595
  • [2] Complexity of penalized likelihood estimation
    Huo, Xiaoming
    Chen, Jie
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (07) : 747 - 759
  • [3] M-estimation for Moderate Deviations From a Unit Root
    Kong, Xin-Bing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (03) : 476 - 485
  • [4] Semiparametric segment M-estimation for locally stationary diffusions
    Deleamont, P-Y
    La Vecchia, D.
    BIOMETRIKA, 2019, 106 (04) : 941 - 956
  • [5] M-estimation for general ARMA Processes with Infinite Variance
    Wu, Rongning
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (03) : 571 - 591
  • [6] Nonparametric M-estimation for Functional Stationary Ergodic Data
    Xiong, Xian-zhu
    Lin, Zheng-yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (03): : 491 - 512
  • [7] Asymptotic properties of nonparametric M-estimation for mixing functional data
    Chen, Jia
    Zhang, Lixin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 533 - 546
  • [8] Robust sparse portfolios for index tracking based on M-estimation
    Li, Ning
    Niu, Yong
    Sun, Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3758 - 3770
  • [9] LOCAL M-ESTIMATION FOR CONDITIONAL VARIANCE FUNCTION WITH DEPENDENT DATA
    Wang, Yunyan
    Tang, Mingtian
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (01) : 333 - 356
  • [10] An M-Estimation Method for InSAR Nonlinear Deformation Modeling and Inversion
    Su, Yuhan
    Peng, Junhuan
    Shi, Mengyao
    Guo, Cuiping
    Ma, Xu
    Li, Xu
    Wang, Junfei
    Wang, Wenwen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12