Integrating predictive biomarkers and classifiers into oncology clinical development programmes

被引:82
作者
Beckman, Robert A. [1 ]
Clark, Jason [2 ]
Chen, Cong [3 ]
机构
[1] Daiichi Sankyo Pharmaceut Dev, Clin Res Oncol, Edison, NJ 08837 USA
[2] Incyte Pharmaceut, Biostat, Wilmington, DE 19880 USA
[3] Merck Res Labs, Biostat & Res Decis Sci, N Wales, PA 19454 USA
关键词
METASTATIC BREAST-CANCER; PHASE-II; MONOCLONAL-ANTIBODY; COLORECTAL-CANCER; TRIAL DESIGN; THERAPY; CHEMOTHERAPY; MUTATIONS; SIGNATURE; SPECIMENS;
D O I
10.1038/nrd3550
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The future of drug development in oncology lies in identifying subsets of patients who will benefit from particular therapies, using predictive biomarkers. These technologies offer hope of enhancing the value of cancer medicines and reducing the size, cost and failure rates of clinical trials. However, examples of the failure of predictive biomarkers also exist. In these cases the use of biomarkers increased the costs, complexity and duration of clinical trials, and narrowed the treated population unnecessarily. Here, we present methods to adaptively integrate predictive biomarkers into clinical programmes in a data-driven manner, wherein these biomarkers are emphasized in exact proportion to the evidence supporting their clinical predictive value. The resulting programme demands value from predictive biomarkers and is designed to optimally harvest this value for oncology drug development.
引用
收藏
页码:735 / 748
页数:14
相关论文
共 45 条
[1]   Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer [J].
Amado, Rafael G. ;
Wolf, Michael ;
Peeters, Marc ;
Van Cutsem, Eric ;
Siena, Salvatore ;
Freeman, Daniel J. ;
Juan, Todd ;
Sikorski, Robert ;
Suggs, Sid ;
Radinsky, Robert ;
Patterson, Scott D. ;
Chang, David D. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (10) :1626-1634
[2]  
[Anonymous], P 101 ANN M AM ASS C
[3]   I-SPY 2: An Adaptive Breast Cancer Trial Design in the Setting of Neoadjuvant Chemotherapy [J].
Barker, A. D. ;
Sigman, C. C. ;
Kelloff, G. J. ;
Hylton, N. M. ;
Berry, D. A. ;
Esserman, L. J. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2009, 86 (01) :97-100
[4]  
BECKMAN RA, 2009, CTR BUSINESS INTELLI
[5]  
Berger J.O., 1985, Statistical decision theory and Bayesian analysis, V2nd
[6]   Bayesian clinical trials [J].
Berry, DA .
NATURE REVIEWS DRUG DISCOVERY, 2006, 5 (01) :27-36
[7]   Introduction to Bayesian methods III: use and interpretation of Bayesian tools in design and analysis [J].
Berry, DA .
CLINICAL TRIALS, 2005, 2 (04) :295-300
[8]   KRAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: The OPUS experience [J].
Bokemeyer, C. ;
Bondarenko, I. ;
Hartmann, J. T. ;
De Braud, F. G. ;
Volovat, C. ;
Nippgen, J. ;
Stroh, C. ;
Celik, I. ;
Koralewski, P. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (15)
[9]   Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology [J].
Brannath, Werner ;
Zuber, Emmanuel ;
Branson, Michael ;
Bretz, Frank ;
Gallo, Paul ;
Posch, Martin ;
Racine-Poon, Amy .
STATISTICS IN MEDICINE, 2009, 28 (10) :1445-1463
[10]   Confirmatory seamless phase II/III clinical trials with hypotheses selection at interim:: General concepts [J].
Bretz, Frank ;
Schmidli, Heinz ;
Koenig, Franz ;
Racine, Amy ;
Maurer, Willi .
BIOMETRICAL JOURNAL, 2006, 48 (04) :623-634