Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia

被引:7
作者
Papadopoulos, Costas [1 ]
Kolokithas-Ntoukas, Argiris [2 ,3 ]
Moreno, Roberto [4 ]
Fuentes, David [5 ]
Loudos, George [6 ]
Loukopoulos, Vassilios C. [7 ]
Kagadis, George C. [1 ,5 ]
机构
[1] Univ Patras, Sch Med, Dept Med Phys, 3Dmi Res Grp, GR-26504 Rion, Greece
[2] Univ Patras, Sch Nat Sci, Dept Mat Sci, Rion, Greece
[3] Univ Patras, Sch Hlth Sci, Dept Pharm, Rion, Greece
[4] Univ Edinburgh, Sch Geosci, Earth & Planetary Sci, Edinburgh, Midlothian, Scotland
[5] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX 77030 USA
[6] BIOEMTECH, Lefkippos Attica Technol Pk NCSR Demokritos, Athens, Greece
[7] Univ Patras, Dept Phys, Rion, Greece
基金
英国自然环境研究理事会;
关键词
COMSOL; kinetic Monte Carlo; magnetic fluid hyperthermia; magnetic nanoparticles; SAR; simulations; SLP; specific absorption rate; IRON-OXIDE NANOPARTICLES; FLUID HYPERTHERMIA; HEAT-GENERATION; PARTICLE HYPERTHERMIA; NANOCRYSTAL CLUSTERS; BLOOD PERFUSION; SIZE; OPTIMIZATION; CONSTANT; FIELD;
D O I
10.1002/mp.15317
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose The purpose of this study was to identify the properties of magnetite nanoparticles that deliver optimal heating efficiency, predict the geometrical characteristics to get these target properties, and determine the concentrations of nanoparticles required to optimize thermotherapy. Methods Kinetic Monte Carlo simulations were employed to identify the properties of magnetic nanoparticles that deliver high Specific Absorption Rate (SAR) values. Optimal volumes were determined for anisotropies ranging between 11 and 40 kJ/m(3) under clinically relevant magnetic field conditions. Atomistic spin simulations were employed to determine the aspect ratios of ellipsoidal magnetite nanoparticles that deliver the target properties. A numerical model was developed using the extended cardiac-torso (XCAT) phantom to simulate low-field (4 kA/m) and high-field (18 kA/m) prostate cancer thermotherapy. A stationary optimization study exploiting the Method of Moving Asymptotes (MMA) was carried out to calculate the concentration fields that deliver homogenous temperature distributions within target thermotherapy range constrained by the optimization objective function. A time-dependent study was used to compute the thermal dose of a 30-min session. Results Prolate ellipsoidal magnetite nanoparticles with a volume of 3922 +/- 35 nm(3) and aspect ratio of 1.56, which yields an effective anisotropy of 20 kJ/m(3), constituted the optimal design at current maximum clinical field properties (H-0( )= 18 kA/m, f = 100 kHz), with SAR = 342.0 +/- 2.7 W/g, while nanoparticles with a volume of 4147 +/- 36 nm(3), aspect ratio of 1.29, and effective anisotropy 11 kJ/m(3) were optimal for low-field applications (H-0( )= 4 kA/m, f = 100 kHz), with SAR = 50.2 +/- 0.5 W/g. The average concentration of 3.86 +/- 0.10 and 0.57 +/- 0.01 mg/cm(3) at 4 and 18 kA/m, respectively, were sufficient to reach therapeutic temperatures of 42-44 degrees C throughout the prostate volume. The thermal dose delivered during a 30-min session exceeded 5.8 Cumulative Equivalent Minutes at 43 degrees C within 90% of the prostate volume (CEM43T(90)). Conclusion The optimal properties and design specifications of magnetite nanoparticles vary with magnetic field properties. Application-specific magnetic nanoparticles or nanoparticles that are optimized at low fields are indicated for optimal thermal dose delivery at low concentrations.
引用
收藏
页码:547 / 567
页数:21
相关论文
共 105 条
[1]   Nonharmonic Driving Fields for Enhancement of Nanoparticle Heating Efficiency in Magnetic Hyperthermia [J].
Allia, Paolo ;
Barrera, Gabriele ;
Tiberto, Paola .
PHYSICAL REVIEW APPLIED, 2019, 12 (03)
[2]   Hysteresis in a linear chain of magnetic nanoparticles [J].
Anand, Manish .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (02)
[3]   Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications [J].
Andrade, Raquel G. D. ;
Veloso, Sergio R. S. ;
Castanheira, Elisabete M. S. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (07)
[4]   Folic Acid-Functionalized, Condensed Magnetic Nanoparticles for Targeted Delivery of Doxorubicin to Tumor Cancer Cells Overexpressing the Folate Receptor [J].
Angelopoulou, Athina ;
Kolokithas-Ntoukas, Argiris ;
Fytas, Christos ;
Avgoustakis, Konstantinos .
ACS OMEGA, 2019, 4 (26) :22214-22227
[5]   Magnetic interaction and anisotropy axes arrangement in nanoparticle aggregates can enhance or reduce the effective magnetic anisotropy [J].
Aquino, V. R. R. ;
Figueiredo, L. C. ;
Coaquira, J. A. H. ;
Sousa, M. H. ;
Bakuzis, A. F. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 498
[6]   Magnetic nanoparticles for drug delivery [J].
Arruebo, Manuel ;
Fernandez-Pacheco, Rodrigo ;
Ibarra, M. Ricardo ;
Santamaria, Jesus .
NANO TODAY, 2007, 2 (03) :22-32
[7]   Constrained Monte Carlo method and calculation of the temperature dependence of magnetic anisotropy [J].
Asselin, P. ;
Evans, R. F. L. ;
Barker, J. ;
Chantrell, R. W. ;
Yanes, R. ;
Chubykalo-Fesenko, O. ;
Hinzke, D. ;
Nowak, U. .
PHYSICAL REVIEW B, 2010, 82 (05)
[8]   Merging High Doxorubicin Loading with Pronounced Magnetic Response and Bio-repellent Properties in Hybrid Drug Nanocarriers [J].
Bakandritsos, Aristides ;
Papagiannopoulos, Aristeidis ;
Anagnostou, Eleni N. ;
Avgoustakis, Konstantinos ;
Zboril, Radek ;
Pispas, Stergios ;
Tucek, Jiri ;
Ryukhtin, Vasyl ;
Bouropoulos, Nikolaos ;
Kolokithas-Ntoukas, Argiris ;
Steriotis, Theodore A. ;
Keiderling, Uwe ;
Winnefeld, Frank .
SMALL, 2012, 8 (15) :2381-2393
[9]   Coarse-graining in micromagnetic simulations of dynamic hysteresis loops [J].
Behbahani, R. ;
Plumer, M. L. ;
Saika-Voivod, I .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (35)
[10]  
Bhabra G, 2009, NAT NANOTECHNOL, V4, P876, DOI [10.1038/NNANO.2009.313, 10.1038/nnano.2009.313]