Phylogeny-Aware Deep 1-Dimensional Convolutional Neural Network for the Classification of Metagenomes

被引:0
|
作者
Manning, Timmy [1 ]
Wassan, Jyotsna Talreja [2 ]
Palu, Cintia [1 ]
Wang, Haiying [2 ]
Browne, Fiona [2 ]
Zheng, Huiru [2 ]
Kelly, Brian [1 ]
Walsh, Paul [1 ]
机构
[1] NSilico Life Sci Ltd, Cork, Ireland
[2] Ulster Univ, Sch Comp, Coleraine, Londonderry, North Ireland
来源
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2018年
基金
欧盟地平线“2020”;
关键词
amplicon sequence variants; convolutional neural network; machine learning; metagenomics; phylogeny; Grad-CAM; visualisation;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper evaluates a novel approach to the integration of biological domain knowledge relating to the natural evolutionary structure of microbial community data to classifying 16S rDNA sequence samples. Specifically, we evaluate the use of phylogenetic trees in addition to amplicon sequence variant abundance in samples for the classification of a processed cattle metagenomics data set using machine learning. Further to this, we employ a class activation map of the network when applied to specific exemplars to determine, firstly, the relevance of higher level taxonomic data, and secondly, the most relevant taxa in determining the classification, according to the classifier.
引用
收藏
页码:1826 / 1831
页数:6
相关论文
共 50 条
  • [31] Golf Swing Data Classification with Deep Convolutional Neural Network
    Jiao Libin
    Bie Rongfang
    Wu Hao
    Wei Yu
    Kos, Anton
    Umek, Anton
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2018, 14 (01):
  • [32] Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network
    Khamparia, Aditya
    Gupta, Deepak
    Nhu Gia Nguyen
    Khanna, Ashish
    Pandey, Babita
    Tiwari, Prayag
    IEEE ACCESS, 2019, 7 : 7717 - 7727
  • [33] A Survey on Image Classification and Activity Recognition using Deep Convolutional Neural Network Architecture
    Sornam, M.
    Muthusubash, Kavitha
    Vanitha, V.
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2017, : 121 - 126
  • [34] Classification of Giemsa staining chromosome using input-aware deep convolutional neural network with integrated uncertainty estimates
    Wei, Hua
    Gao, Wen
    Nie, Haitao
    Sun, Jiaqi
    Zhu, Ming
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [35] Image Classification of Time Series Based on Deep Convolutional Neural Network
    Cao, Wenjie
    Zhang, Cheng
    Xiong, Zhenzhen
    Wang, Ting
    Chen, Junchao
    Zhang, Bengong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8488 - 8491
  • [36] Deep Convolutional Neural Network for SEM Image Noise Variance Classification
    Swee, Sim Kok
    Chen, Lim Choon
    Chiang, Tan Shing
    Khim, Toa Chean
    ENGINEERING LETTERS, 2023, 31 (01) : 19 - 19
  • [37] Automatic epileptic signal classification using deep convolutional neural network
    Sinha, Dipali
    Thangavel, K.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (04) : 963 - 973
  • [38] Multimodal Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2530 - 2537
  • [39] Deep learning classification of biomedical text using convolutional neural network
    Dollah R.
    Sheng C.Y.
    Zakaria N.
    Othman M.S.
    Rasib A.W.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (08): : 512 - 517
  • [40] Solid Waste Image Classification Using Deep Convolutional Neural Network
    Nnamoko, Nonso
    Barrowclough, Joseph
    Procter, Jack
    INFRASTRUCTURES, 2022, 7 (04)