Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications

被引:77
作者
Isabel Gonzalez-Sanchez, M. [1 ,2 ,3 ]
Perni, Stefano [3 ,4 ]
Tommasi, Giacomo [3 ]
Glyn Morris, Nathanael [3 ]
Hawkins, Karl [5 ]
Lopez-Cabarcos, Enrique [2 ]
Prokopovich, Polina [3 ,4 ]
机构
[1] Univ Castilla La Mancha, Sch Ind Engn, Dept Phys Chem, Albacete, Spain
[2] Univ Complutense Madrid, Dept Phys Chem 2, Madrid, Spain
[3] Cardiff Univ, Sch Pharm & Pharmaceut Sci, Cardiff CF10 3NB, S Glam, Wales
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[5] Univ Coll Swansea, Inst Life Sci, Ctr Nanohlth, Swansea, W Glam, Wales
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2015年 / 50卷
关键词
Hydrogels; Silver; Nanoparticles; Infections; Staphylococcus epidermidis; Methicillin-resistant Staphylococcus aureus (MRSA); BIOFILM FORMATION; GENTAMICIN; STABILITY; PEG;
D O I
10.1016/j.msec.2015.02.002
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Infections are frequent and very undesired occurrences after orthopedic procedures; furthermore, the growing concern caused by the rise in antibiotic resistance is progressively dwindling the efficacy of such drugs. Artificial bone graft materials could solve some of the problems associated with the gold standard use of natural bone graft such as limited bone material, pain at the donor site and rejections if donor tissue is used. We have previously described new acrylate base nanocomposite hydrogels as bone graft materials. In the present paper, we describe the integration of silver nanoparticles in the polymeric mineralized biomaterial to provide non-antibiotic antibacterial activity against Staphylococcus epidermidis and Methicillin-resistant Staphylococcus aureus. Two different crosslinking degrees were tested and the silver nanoparticles were integrated into the composite matrix by means of three different methods; entrapment in the polymeric hydrogel before the mineralization; diffusion during the process of calcium phosphate crystallization and adsorption post-mineralization. The latter being generally the most effective method of encapsulation; however, the adsorption of silver nanoparticles inside the pores of the biomaterial led to a decreasing antibacterial activity for adsorption time longer than 2 days. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:332 / 340
页数:9
相关论文
共 59 条
[21]   In vitro adherence and accumulation of Staphylococcus epidermidis RP 62 A and Staphylococcus epidermidis M7 on four different bone cements [J].
König, DP ;
Schierholz, JM ;
Hilgers, RD ;
Bertram, C ;
Perdreau-Remington, F ;
Rütt, A .
LANGENBECKS ARCHIVES OF SURGERY, 2001, 386 (05) :328-332
[22]   In Vitro Silver Ion Release Kinetics from Nanosilver/Poly(vinyl alcohol) Hydrogels Synthesized by Gamma Irradiation [J].
Krstic, Jelena ;
Spasojevic, Jelena ;
Radosavljevic, Aleksandra ;
Peric-Grujic, Aleksandra ;
Duric, Momcilo ;
Kacarevic-Popovic, Zorica ;
Popovic, Srdan .
JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (11)
[23]   Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs) [J].
Kvitek, Libor ;
Panacek, Ales ;
Soukupova, Jana ;
Kolar, Milan ;
Vecerova, Renata ;
Prucek, Robert ;
Holecova, Mirka ;
Zboril, Radek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) :5825-5834
[24]   Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity [J].
Le, Anh-Tuan ;
Le Thi Tam ;
Phuong Dinh Tam ;
Huy, P. T. ;
Tran Quang Huy ;
Nguyen Van Hieu ;
Kudrinskiy, A. A. ;
Krutyakov, Yu A. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2010, 30 (06) :910-916
[25]   Synthesis and Properties of Silver Nanoparticles in Chitosan-Based Thermosensitive Semi-Interpenetrating Hydrogels [J].
Li, Guiying ;
Wen, Quanwu ;
Zhang, Ting ;
Ju, Yuanyuan .
JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (04) :2690-2697
[26]   Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels [J].
Li, Hanying ;
Xin, Huolin L. ;
Muller, David A. ;
Estroff, Lara A. .
SCIENCE, 2009, 326 (5957) :1244-1247
[27]   Synthesis and characterization of PEG dimethacrylates and their hydrogels [J].
Lin-Gibson, S ;
Bencherif, S ;
Cooper, JA ;
Wetzel, SJ ;
Antonucci, JM ;
Vogel, BM ;
Horkay, F ;
Washburn, NR .
BIOMACROMOLECULES, 2004, 5 (04) :1280-1287
[28]  
LOWENSTAM H.A., 1989, On Biomineralization, DOI DOI 10.1093/OSO/9780195049770.001.0001
[29]   Highly swelling hydrogels from ordered galactose-based polyacrylates [J].
Martin, BD ;
Linhardt, RJ ;
Dordick, JS .
BIOMATERIALS, 1998, 19 (1-3) :69-76
[30]   Pharmaceutical strategies to prevent ventilator-associated pneumonia [J].
McCrory, R ;
Jones, DS ;
Adair, CG ;
Gorman, SP .
JOURNAL OF PHARMACY AND PHARMACOLOGY, 2003, 55 (04) :411-428