Polymer electrolyte membranes containing titanate nanotubes for elevated temperature fuel cells under low relative humidity

被引:24
作者
Li, Qiong [1 ]
Xiao, Chuan [1 ]
Zhang, Haining [1 ,2 ]
Chen, Feitai [3 ]
Fang, Pengfei [3 ]
Pan, Mu [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Key Lab Fuel Cell Technol Hubei Prov, Wuhan 430070, Peoples R China
[3] Wuhan Univ, Coll Phys & Technol, Wuhan 430072, Peoples R China
基金
美国国家科学基金会;
关键词
Polymer electrolyte membrane; Fuel cells; Titanate nanotubes; Nanocomposites; COMPOSITE MEMBRANES; PERFLUORINATED IONOMER; PERFORMANCE; TIO2;
D O I
10.1016/j.jpowsour.2011.05.082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nafion-titanate nanotubes composite membranes prepared through casting process have been investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. The glass transition temperature and the decomposition temperature of composite membrane at dry state are higher than those of pristine Nation membrane. Cracks have been observed in the membrane at the concentration of nanotubes above 5 wt.%. The maximum proton conductivity at 100 degrees C and 50% relative humidity is observed with the concentration of doped titanate nanotubes of 5 wt.%. Solid nuclear magnetic resonance spectrum is applied to qualitatively characterize the status of water inside the membrane at different temperatures. The power densities at 0.8 V for cell assembled from composite membrane containing 5 wt.% of titanate nanotubes are about 13% and 35% higher than that for plain Nation cells under 50% relative humidity at 65 degrees C and 90 degrees C. respectively. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:8250 / 8256
页数:7
相关论文
共 23 条
[1]   Function and characterization of metal oxide-naflon composite membranes for elevated-temperature H2/O2 PEM fuel cells [J].
Adjemian, KT ;
Dominey, R ;
Krishnan, L ;
Ota, H ;
Majsztrik, P ;
Zhang, T ;
Mann, J ;
Kirby, B ;
Gatto, L ;
Velo-Simpson, M ;
Leahy, J ;
Srinivasant, S ;
Benziger, JB ;
Bocarsly, AB .
CHEMISTRY OF MATERIALS, 2006, 18 (09) :2238-2248
[2]   Composite membranes for medium-temperature PEM fuel cells [J].
Alberti, G ;
Casciola, M .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :129-154
[3]   Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications [J].
Bavykin, Dmitry V. ;
Friedrich, Jens M. ;
Walsh, Frank C. .
ADVANCED MATERIALS, 2006, 18 (21) :2807-2824
[4]   Elongated Titanate Nanostructures and Their Applications [J].
Bavykin, Dmitry V. ;
Walsh, Frank C. .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2009, (08) :977-997
[5]   PROTON NMR METHOD FOR THE QUANTITATIVE-DETERMINATION OF THE WATER-CONTENT OF THE POLYMERIC FLUOROSULFONIC ACID NAFION-H [J].
BUNCE, NJ ;
SONDHEIMER, SJ ;
FYFE, CA .
MACROMOLECULES, 1986, 19 (02) :333-339
[6]   Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity [J].
Chen, S. Y. ;
Han, C. C. ;
Tsai, C. H. ;
Huang, J. ;
Chen-Yang, Y. W. .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :363-372
[7]   Recent developments in proton exchange membranes for fuel cells [J].
Devanathan, Ram .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :101-119
[8]   Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells [J].
Jalani, NH ;
Dunn, K ;
Datta, R .
ELECTROCHIMICA ACTA, 2005, 51 (03) :553-560
[9]   Formation of titanium oxide nanotube [J].
Kasuga, T ;
Hiramatsu, M ;
Hoson, A ;
Sekino, T ;
Niihara, K .
LANGMUIR, 1998, 14 (12) :3160-3163
[10]   Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes [J].
Li, Ke ;
Ye, Gongbo ;
Pan, Jingjing ;
Zhang, Haining ;
Pan, Mu .
JOURNAL OF MEMBRANE SCIENCE, 2010, 347 (1-2) :26-31