Implicit function theorem for systems of polynomial equations with vanishing Jacobian and its application to flexible polyhedra and frameworks

被引:4
作者
Alexandrov, V [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090 90, Russia
来源
MONATSHEFTE FUR MATHEMATIK | 2001年 / 132卷 / 04期
关键词
flexible polyhedron; flexible framework; infinitesimal bending; approximate solution to a system of algebraic equations; implicit function;
D O I
10.1007/s006050170034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence problem for a local implicit function determined by a system of nonlinear algebraic equations in the particular case when the determinant of its Jacobian matrix vanishes at the point under consideration. We present a system of sufficient conditions that implies existence of a local implicit function as well as another system of sufficient conditions that guarantees absence of a local implicit function. The results obtained are applied to proving new and classical results on flexibility and rigidity of polyhedra and frameworks.
引用
收藏
页码:269 / 288
页数:20
相关论文
共 30 条
[1]  
ALEKSANDROV AD, 1998, BEITR ALGEBRA GEOM, V39, P367
[2]  
ALEKSANDROV AD, 1958, KONVEXE POLYDER
[3]  
Artin Michael, 1969, Inst. Hautes Etudes Sci. Publ. M ath, V36, P23
[4]   WHEN IS A BIPARTITE GRAPH A RIGID FRAMEWORK [J].
BOLKER, ED ;
ROTH, B .
PACIFIC JOURNAL OF MATHEMATICS, 1980, 90 (01) :27-44
[5]  
Bricard R., 1897, J. Math. Pure. Appl., V3, P113
[6]  
Cohn-Vossen S., 1936, USP MAT NAUK, V1, P33
[8]   Second-order rigidity and prestress stability for tensegrity frameworks [J].
Connelly, R ;
Whiteley, W .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (03) :453-491
[9]   HIGHER-ORDER RIGIDITY - WHAT IS THE PROPER DEFINITION [J].
CONNELLY, R ;
SERVATIUS, H .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (02) :193-200
[10]  
Connelly R., 1977, PUBL MATH I HAUTES E, V47, P333