Continuous-time quantum Monte Carlo method for fermions

被引:549
作者
Rubtsov, AN [1 ]
Savkin, VV
Lichtenstein, AI
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119992, Russia
[2] Univ Nijmegen, Inst Theoret Phys, NL-6525 ED Nijmegen, Netherlands
[3] Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany
关键词
D O I
10.1103/PhysRevB.72.035122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a numerically exact continuous-time quantum Monte Carlo algorithm for fermions with a general interaction nonlocal in space-time. The new determinantal grand-canonical scheme is based on a stochastic series expansion for the partition function in the interaction representation. The method is particularly applicable for multiband, time-dependent correlations since it does not invoke the Hubbard-Stratonovich transformation. The test calculations for exactly solvable models, as well results for the Green function and for the time-dependent susceptibility of the multiband supersymmetric model with a spin-flip interaction are discussed.
引用
收藏
页数:9
相关论文
共 25 条
[1]   FERMION SIGN PROBLEM - DECOUPLING TRANSFORMATION AND SIMULATION ALGORITHM [J].
BATROUNI, GG ;
DEFORCRAND, P .
PHYSICAL REVIEW B, 1993, 48 (01) :589-592
[2]   Simulations of discrete quantum systems in continuous Euclidean time [J].
Beard, BB ;
Wiese, UJ .
PHYSICAL REVIEW LETTERS, 1996, 77 (25) :5130-5133
[3]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[4]   Strongly correlated superconductivity [J].
Capone, M ;
Fabrizio, M ;
Castellani, C ;
Tosatti, E .
SCIENCE, 2002, 296 (5577) :2364-2366
[5]   ORBITAL PARAMAGNETISM OF LOCALIZED NONMAGNETIC IMPURITIES IN METALS [J].
DWORIN, L ;
NARATH, A .
PHYSICAL REVIEW LETTERS, 1970, 25 (18) :1287-&
[6]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[7]   ENERGY MEASUREMENT IN AUXILIARY-FIELD MANY-ELECTRON CALCULATIONS [J].
HAMANN, DR ;
FAHY, SB .
PHYSICAL REVIEW B, 1990, 41 (16) :11352-11363
[8]   DISCRETE HUBBARD-STRATONOVICH TRANSFORMATION FOR FERMION LATTICE MODELS [J].
HIRSCH, JE .
PHYSICAL REVIEW B, 1983, 28 (07) :4059-4061
[9]   CALCULATION OF PARTITION FUNCTIONS [J].
HUBBARD, J .
PHYSICAL REVIEW LETTERS, 1959, 3 (02) :77-78
[10]  
Itzykson C., 1980, Quantum field theory