Degradation of concrete in marine environment under coupled chloride and sulfate attack: A numerical and experimental study

被引:84
作者
Sun, Dandan [1 ,2 ]
Cao, Zhenjie [2 ]
Huang, Changfu [2 ]
Wu, Kai [1 ]
De Schutter, Geert [3 ]
Zhang, Lihai [4 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Civil Engn Mat, Shanghai 201804, Peoples R China
[2] China Railway 15 Bur Grp CO LTD, Technol Ctr, Shanghai 200040, Peoples R China
[3] Univ Ghent, Magnel Lab Concrete Res, B-9052 Ghent, Belgium
[4] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Offshore concrete structure; Chloride ions; Sulfate ions; Competitive binding; Reactive-transport; ETTRINGITE FORMATION; REINFORCED-CONCRETE; DIFFUSION-MODEL; CEMENT MORTAR; CORROSION; STEEL; SEAWATER; INGRESS; IONS; RESISTANCE;
D O I
10.1016/j.cscm.2022.e01218
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The corrosion of offshore reinforced concrete structures under combined chloride and sulfate ions attack is a complex corrosion phenomenon. The purpose of this study is to develop numerical models in conjunction with experimental studies for long-term durability assessment of offshore concrete structures. A numerical model was developed to describe the simultaneously transport of chloride and sulfate ions considering the competitive binding by hardened cement pastes effect. The model was validated by a series of experimental studies. The validated model was implemented to predict the service life of the offshore RC structures under various chloride and sulfate solutions. The results show that chloride ions induced corrosion of steel bars in offshore RC structures is highly influenced by the concentration of sulfate ions. The sulfate ions induced concrete expansion and cracking from ettringite formation could potentially accelerate chloride ions induced corrosion of steel bars in concrete, ultimately the premature failure of the offshore RC structures.
引用
收藏
页数:12
相关论文
共 48 条
[1]   The effect of chloride on cement mortar subjected to sulfate exposure at low temperature [J].
Abdalkader, Ashraf H. M. ;
Lynsdale, Cyril J. ;
Cripps, John C. .
CONSTRUCTION AND BUILDING MATERIALS, 2015, 78 :102-111
[2]   Time-dependence of chloride diffusion for concrete containing metakaolin [J].
Al-alaily, Hossam S. ;
Hassan, Assem A. A. .
JOURNAL OF BUILDING ENGINEERING, 2016, 7 :159-169
[3]  
Al-Rabiah A.R., 1990, MAR STRUCT, V3, P285, DOI [10.1016/0951-8339(90)90013-H, DOI 10.1016/0951-8339(90)90013-H]
[4]  
ALAMOUDI OSB, 1993, CEMENT CONCRETE RES, V23, P139
[5]   Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes [J].
Bertolini, L ;
Gastaldi, M ;
Pedeferri, M ;
Redaelli, E .
CORROSION SCIENCE, 2002, 44 (07) :1497-1513
[6]   Friedel's salt, Ca2Al(OH)6(Cl,OH)•2H2O:: Its solid solutions and their role in chloride binding [J].
Birnin-Yauri, UA ;
Glasser, FP .
CEMENT AND CONCRETE RESEARCH, 1998, 28 (12) :1713-1723
[7]   Predicting the chloride penetration of fly ash concrete in seawater [J].
Chalee, W. ;
Jaturapitakkul, C. ;
Chindaprasirt, P. .
MARINE STRUCTURES, 2009, 22 (03) :341-353
[8]   Damage evolution in cement mortar due to erosion of sulphate [J].
Chen, Jian-kang ;
Jiang, Min-qiang ;
Zhu, Jue .
CORROSION SCIENCE, 2008, 50 (09) :2478-2483
[9]   Effect of the marine environment on reinforced concrete durability in lberoamerican countries:: DURACON project/CYTED [J].
de Rincon, O. Troconis ;
Sanchez, M. ;
Millano, V. ;
Fernandez, R. ;
de Partidas, E. A. ;
Andrade, C. ;
Martinez, I. ;
Castellote, M. ;
Barboza, M. ;
Irassar, F. ;
Montenegro, J. C. ;
Vera, R. ;
Carvajal, A. M. ;
de Gutierrez, R. M. ;
Maldonado, J. ;
Guerrero, C. ;
Saborio-Leiva, E. ;
Villalobos, A. C. ;
Tres-Calvo, G. ;
Torres-Acosta, A. ;
Prez-Quiroz, J. ;
Martinez-Madrid, M. ;
Almeraya-Calderon, F. ;
Castro-Borges, P. ;
Moreno, E. I. ;
Nrez-Lopez, T. ;
Salta, M. ;
de Melo, A. P. ;
Rodriguez, G. ;
Pedron, Miguel ;
Derregibus, M. .
CORROSION SCIENCE, 2007, 49 (07) :2832-2843
[10]  
De Weerdt K, 2012, P P INT C DUR CONCR