Rethinking modeling Alzheimer's disease progression from a multi-task learning perspective with deep recurrent neural network

被引:24
|
作者
Liang, Wei [1 ]
Zhang, Kai [1 ]
Cao, Peng [1 ,2 ]
Liu, Xiaoli [3 ]
Yang, Jinzhu [1 ,2 ]
Zaiane, Osmar [4 ]
机构
[1] Northeastern Univ, Comp Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Minist Educ, Key Lab Intelligent Comp Med Image, Shenyang, Peoples R China
[3] Alibaba AI Labs, Hangzhou, Peoples R China
[4] Univ Alberta, Alberta Machine Intelligence Inst, Edmonton, AB, Canada
基金
中国国家自然科学基金;
关键词
Multitask learning; Time_LSTM; Disease progression; Missing value; PREDICTION;
D O I
10.1016/j.compbiomed.2021.104935
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alzheimer's disease (AD) is a severe neurodegenerative disorder that usually starts slowly and progressively worsens. Predicting the progression of Alzheimer's disease with longitudinal analysis on the time series data has recently received increasing attention. However, training an accurate progression model for brain network faces two major challenges: missing features, and the small sample size during the follow-up study. According to our analysis on the AD progression task, we thoroughly analyze the correlation among the multiple predictive tasks of AD progression at multiple time points. Thus, we propose a multi-task learning framework that can adaptively impute missing values and predict future progression over time from a subject's historical measurements. Progression is measured in terms of MRI volumetric measurements, trajectories of a cognitive score and clinical status. To this end, we propose a new perspective of predicting the AD progression with a multi-task learning paradigm. In our multi-task learning paradigm, we hypothesize that the inherent correlations exist among: (i). the prediction tasks of clinical diagnosis, cognition and ventricular volume at each time point; (ii). the tasks of imputation and prediction; and (iii). the prediction tasks at multiple future time points. According to our findings of the task correlation, we develop an end-to-end deep multi-task learning method to jointly improve the performance of assigning missing value and prediction. We design a balanced multi-task dynamic weight optimization. With in-depth analysis and empirical evidence on Alzheimer's Disease Neuroimaging Initiative (ADNI), we show the benefits and flexibility of the proposed multi-task learning model, especially for the prediction at the M60 time point. The proposed approach achieves 5.6%, 5.7%, 4.0% and 11.8% improvement with respect to mAUC, BCA and MAE (ADAS-Cog13 and Ventricles), respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Improved neural network with multi-task learning for Alzheimer's disease classification
    Zhang, Xin
    Gao, Le
    Wang, Zhimin
    Yu, Yong
    Zhang, Yudong
    Hong, Jin
    HELIYON, 2024, 10 (04)
  • [2] Multi-Task Deep Evidential Sequence Learning for Trustworthy Alzheimer's Disease Progression Prediction
    Zhao, Zeyuan
    Li, Ping
    Dai, Yongjie
    Min, Zhaoe
    Chen, Lei
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [3] ConnectomeNet: A Unified Deep Neural Network Modeling Framework for Multi-Task Learning
    Lim, Heechul
    Chon, Kang-Wook
    Kim, Min-Soo
    IEEE ACCESS, 2023, 11 : 34297 - 34308
  • [4] Modeling disease progression via multi-task learning
    Zhou, Jiayu
    Liu, Jun
    Narayan, Vaibhav A.
    Ye, Jieping
    NEUROIMAGE, 2013, 78 : 233 - 248
  • [5] Visual Analysis of Biomarkers Selected via Multi-Task Learning for Modeling Alzheimer's Disease Progression
    Wang, Xulong
    Bi, Gaoshan
    Zhang, Yu
    Qi, Jun
    Yang, Yun
    Yang, Po
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 1328 - 1333
  • [6] A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease
    Nianyin Zeng
    Han Li
    Yonghong Peng
    Neural Computing and Applications, 2023, 35 : 11599 - 11610
  • [7] A new deep belief network-based multi-task learning for diagnosis of Alzheimer's disease
    Zeng, Nianyin
    Li, Han
    Peng, Yonghong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (16): : 11599 - 11610
  • [8] MULTI-TASK DEEP NEURAL NETWORK FOR MULTI-LABEL LEARNING
    Huang, Yan
    Wang, Wei
    Wang, Liang
    Tan, Tieniu
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2897 - 2900
  • [9] Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis
    Heung-Il Suk
    Seong-Whan Lee
    Dinggang Shen
    Brain Structure and Function, 2016, 221 : 2569 - 2587
  • [10] Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
    Suk, Heung-Il
    Lee, Seong-Whan
    Shen, Dinggang
    BRAIN STRUCTURE & FUNCTION, 2016, 221 (05): : 2569 - 2587