An efficient semi-quantum private comparison without pre-shared keys

被引:16
作者
Tian, Yuan [1 ,2 ]
Li, Jian [2 ]
Chen, Xiu-Bo [1 ]
Ye, Chong-Qiang [2 ]
Li, Chao-Yang [3 ]
Hou, Yan-Yan [2 ]
机构
[1] Beijing Univ Post & Telecommun, Informat Secur Ctr, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Beijing Univ Post & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Software Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum cryptography; Semi-quantum private comparison; Entangled states; Semi-honest third party; Without pre-shared key; COMMUNICATION; PROTOCOL;
D O I
10.1007/s11128-021-03294-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Semi-quantum private comparison protocol permits two classical participants to compare the equality of their private information with the help of a semi-honest third party without disclosing privacy. An innovative semi-quantum private comparison protocol based on maximally entangled Greenberger-Horne-Zeilinger-type states has been discussed. The proposed protocol is efficient and without the pre-shared keys. Next, the security analysis guarantees the presented protocol is asymptotically secure against the outsider and the insider attacks. Moreover, the qubit efficiency of the presented protocol is 3.125%. The efficiency comparison shows that it improves the efficiency by 125% for the literature without pre-shared keys.
引用
收藏
页数:13
相关论文
共 29 条
  • [1] [Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
  • [2] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [3] Quantum key distribution with classical Bob
    Boyer, Michel
    Kenigsberg, Dan
    Mor, Tal
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (14)
  • [4] Quantum key distribution in the Holevo limit
    Cabello, A
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (26) : 5635 - 5638
  • [5] Chou W.H, 2016, SEMIQUANTUM PRIVATE
  • [6] Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots
    Dong, Yitong
    Wang, Ya-Kun
    Yuan, Fanglong
    Johnston, Andrew
    Liu, Yuan
    Ma, Dongxin
    Choi, Min-Jae
    Chen, Bin
    Chekini, Mahshid
    Baek, Se-Woong
    Sagar, Laxmi Kishore
    Fan, James
    Hou, Yi
    Wu, Mingjian
    Lee, Seungjin
    Sun, Bin
    Hoogland, Sjoerd
    Quintero-Bermudez, Rafael
    Ebe, Hinako
    Todorovic, Petar
    Dinic, Filip
    Li, Peicheng
    Kung, Hao Ting
    Saidaminov, Makhsud, I
    Kumacheva, Eugenia
    Spiecker, Erdmann
    Liao, Liang-Sheng
    Voznyy, Oleksandr
    Lu, Zheng-Hong
    Sargent, Edward H.
    [J]. NATURE NANOTECHNOLOGY, 2020, 15 (08) : 668 - +
  • [7] Rational protocol of quantum secure multi-party computation
    Dou, Zhao
    Xu, Gang
    Chen, Xiu-Bo
    Niu, Xin-Xin
    Yang, Yi-Xian
    [J]. QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [8] Semi-Quantum Private Comparison Using Single Photons
    Lang Yan-Feng
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (10) : 3048 - 3055
  • [9] Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state
    Li, Chaoyang
    Chen, Xiubo
    Li, Hengji
    Yang, Yuguang
    Li, Jian
    [J]. QUANTUM INFORMATION PROCESSING, 2019, 18 (05)
  • [10] Deterministic Quantum Secure Direct Communication Protocol Based on Omega State
    Li, Leilei
    Li, Jian
    Li, Chaoyang
    Li, Hengji
    Tian, Yuan
    Zheng, Yan
    Yang, Yuguang
    [J]. IEEE ACCESS, 2019, 7 : 6915 - 6921