Maximizing benefit of classifications using feature intervals

被引:0
作者
Ikizler, N [1 ]
Güvenir, HA [1 ]
机构
[1] Bilkent Univ, Dept Comp Engn, TR-06533 Ankara, Turkey
来源
KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS | 2003年 / 2773卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is a great need for classification methods that can properly handle asymmetric cost and benefit constraints of classifications. In this study, we aim to emphasize the importance of classification benefits by means of a new classification algorithm, Benefit-Maximizing classifier with Feature Intervals (BMFI) that uses feature projection based knowledge representation. Empirical results show that BMFI has promising performance compared to recent cost-sensitive algorithms in terms of the benefit gained.
引用
收藏
页码:339 / 345
页数:7
相关论文
共 8 条
  • [1] Blake C.L., 1998, UCI repository of machine learning databases
  • [2] Domingos P., 1999, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P155
  • [3] Elkan C, 2001, IJCAI, DOI DOI 10.5555/1642194.1642224
  • [4] FRANK E, 2000, WEKA 3 DATA MINING O
  • [5] Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals
    Guvenir, HA
    Demiroz, G
    Ilter, N
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 1998, 13 (03) : 147 - 165
  • [6] GUVENIR HA, 2001, P 10 TURK S ART INT, P265
  • [7] IKIZLER N, 2002, BUCE0208 BILK U
  • [8] Ting KM, 2002, IEEE T KNOWL DATA EN, V14, P659, DOI 10.1109/TKDE.2002.1000348