Performance analysis of a multistage internal circulation liquid desiccant dehumidifier

被引:16
|
作者
Cheng, Xingwang [1 ]
Rong, Yangyiming [1 ]
Zhou, Xia [1 ]
Gu, Chenjie [1 ]
Zhi, Xiaoqin [1 ]
Qiu, Limin [1 ]
Yuan, Yijun [2 ]
Wang, Kai [1 ]
机构
[1] Zhejiang Univ, Inst Refrigerat & Cryogen, Hangzhou 310027, Peoples R China
[2] Hangzhou Xinghuan Co Ltd, Hangzhou 311200, Peoples R China
基金
国家重点研发计划;
关键词
Liquid desiccant dehumidifier; Multistage; Internal circulation; Theoretical analysis; MASS-TRANSFER COEFFICIENTS; AIR-CONDITIONING SYSTEM; COOLED/HEATED DEHUMIDIFIER/REGENERATOR; HEAT; COUNTER; MODEL;
D O I
10.1016/j.applthermaleng.2020.115163
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel multistage internal circulation liquid desiccant dehumidifier (MICLDD) is proposed for feed air drying of air compressors in a cryogenic air separation unit (ASU). The dehumidifier is designed in a multistage structure, in which the packing bed and cooling module are layered separately inside each stage. The solution concentration and flow rate can be evenly distributed according to the moisture content distribution along the dehumidification process using the internal circulation structure. A numerical model validated by using experimental data from previous literatures, is employed to simulate the heat and mass transfer process within the dehumidifier. Effects of the inlet parameters and the number of packing stages on the dehumidification performance are investigated. Results show that the dehumidification efficiency is mainly affected by the mass flow rate of desiccant solution and increases with the mass flow rate of desiccant solution. With the increase of packing series, the heat and mass transfer area increases proportionally, so the dehumidification efficiency is improved. Compared to the structure of the packed tower with cooling tubes proposed in Ref. 1121, the dehumidification efficiency of the MICLDD can be improved by 7.3% with the same pump power consumption.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Performance analysis of an electric vehicle heat pump system with a desiccant dehumidifier
    Na, Sun-Ik
    Chung, Yoong
    Kim, Min Soo
    ENERGY CONVERSION AND MANAGEMENT, 2021, 236
  • [42] Thermodynamic analysis of a counter flow adiabatic dehumidifier with different liquid desiccant materials
    Koronaki, I. P.
    Christodoulaki, R. I.
    Papaefthimiou, V. D.
    Rogdakis, E. D.
    APPLIED THERMAL ENGINEERING, 2013, 50 (01) : 361 - 373
  • [43] Effect of operating parameters of desiccant wheel on the performance of solar desiccant dehumidifier
    Kushwaha, Pravesh Kumar
    Kumar, Amit
    Choudhary, Rajesh
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2024, 43 (05)
  • [44] Analytical Modeling and Performance Study of a Cross Flow Air Dehumidifier Using Liquid Desiccant
    Bassuoni, M. M.
    MATERIALS RESEARCH AND APPLICATIONS, PTS 1-3, 2014, 875-877 : 1205 - 1213
  • [45] Multilayered artificial neural network for performance prediction of an adiabatic solar liquid desiccant dehumidifier
    Oyieke, Andrew Y. A.
    Inambao, Freddie L.
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2019, 14 (03) : 351 - 363
  • [46] Numerical study on dehumidification performance of a cross-flow liquid desiccant air dehumidifier
    Lu, Jun
    Wang, Meilin
    Li, Yongcai
    Yang, Lulu
    10TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING, ISHVAC2017, 2017, 205 : 3630 - 3637
  • [47] Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer
    Liu, X. H.
    Qu, K. Y.
    Jiang, Y.
    RENEWABLE ENERGY, 2006, 31 (10) : 1627 - 1639
  • [48] Performance analysis and design implementation of a novel polymer hollow fiber liquid desiccant dehumidifier with aqueous potassium formate
    Chen, Xiangjie
    Zhang, Nan
    Su, Yuehong
    Aydin, Devrim
    Zheng, Hongfei
    Bai, Hongyu
    Georgakis, Apostolos
    Jarimi, Hasila
    Riffat, Saffa
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2019, 13
  • [49] Entropy and exergy analysis of an internally-cooled membrane liquid desiccant dehumidifier
    Liang, Cai-Hang
    Li, Nan-Feng
    Huang, Si-Min
    ENERGY, 2020, 192
  • [50] Performance analysis of an internally-cooled plate membrane liquid desiccant dehumidifier (IMLDD): An analytical solution approach
    Huang, Si-Min
    Yang, Minlin
    Hu, Bing
    Tao, Shi
    Qin, Frank G. F.
    Weng, Wanliang
    Wang, Wenhao
    Liu, Jian
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 119 : 577 - 585