Network Anomaly Detection Using Header Information With Greedy Algorithm

被引:1
作者
Ates, Cagatay [1 ]
Ozdel, Suleyman [1 ]
Yildirim, Metehan [1 ]
Anarim, Emin [1 ]
机构
[1] Bogazici Univ, Elekt Elekt Muhendisligi Bolumu, Istanbul, Turkey
来源
2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) | 2019年
关键词
Entropy; greedy; divergence; anomaly detection; intrusion detection; DDoS; SVM;
D O I
10.1109/siu.2019.8806451
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Network anomaly detection is an important and rapidly growing area. In this paper, we propose a new network anomaly detection method based on the probability distributions of header information. The distances between the distributions of headers are calculated to reflect the main characteristics of the network. These are calculated using Greedy algorithm which eliminates some requirements associated with Kullback-Leibler divergence such as having the same rank of the probability distributions. Then, Support Vector Machine classifier is used in the detection phase to reduce false alarm rates and to make the system adaptive for different networks. This algorithm is tested on the real data collected from Bogazici University network and MIT Darpa 2000 dataset.
引用
收藏
页数:4
相关论文
共 50 条
[41]   Anomaly Detection in Network Traffic Using Advanced Machine Learning Techniques [J].
Ness, Stephanie ;
Eswarakrishnan, Vishwanath ;
Sridharan, Harish ;
Shinde, Varun ;
Janapareddy, Naga Venkata Prasad ;
Dhanawat, Vineet .
IEEE ACCESS, 2025, 13 :16133-16149
[42]   A machine learning framework for network anomaly detection using SVM and GA [J].
Shon, T ;
Kim, Y ;
Lee, C ;
Moon, A .
PROCEEDINGS FROM THE SIXTH ANNUAL IEEE SYSTEMS, MAN AND CYBERNETICS INFORMATION ASSURANCE WORKSHOP, 2005, :176-183
[43]   A Study on Network Anomaly Detection Using Fast Persistent Contrastive Divergence [J].
Jeong, Jaeyeong ;
Park, Seongmin ;
Lim, Joonhyung ;
Kang, Jiwon ;
Shin, Dongil ;
Shin, Dongkyoo .
SYMMETRY-BASEL, 2024, 16 (09)
[44]   Neighbor discovery protocol anomaly-based detection system using neural network algorithm [J].
Saad, Redhwan M. A. ;
Anbar, Mohammed ;
Manickam, Selvakumar ;
Shaheen, Samir I. ;
Hasbullah, Iznan H. .
INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (03) :1787-1803
[45]   Network Intrusion Detection System Using Anomaly Detection Techniques [J].
Oroian, David ;
Bolboaca, Roland ;
Roman, Adrian-Silviu ;
Dobrota, Virgil .
2024 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING, ICCP 2024, 2024, :93-100
[46]   A survey of network anomaly detection techniques [J].
Ahmed, Mohiuddin ;
Mahmood, Abdun Naser ;
Hu, Jiankun .
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2016, 60 :19-31
[47]   Network Anomaly Detection Based on WaveNet [J].
Kokkonen, Tero ;
Puuska, Samir ;
Alatalo, Janne ;
Heilimo, Eppu ;
Makela, Antti .
INTERNET OF THINGS, SMART SPACES, AND NEXT GENERATION NETWORKS AND SYSTEMS, NEW2AN 2019, RUSMART 2019, 2019, 11660 :424-433
[48]   A comprehensive survey on network anomaly detection [J].
Gilberto Fernandes ;
Joel J. P. C. Rodrigues ;
Luiz Fernando Carvalho ;
Jalal F. Al-Muhtadi ;
Mario Lemes Proença .
Telecommunication Systems, 2019, 70 :447-489
[49]   An Encoding Adversarial Network for Anomaly Detection [J].
Gherbi, Elies ;
Hanczar, Blaise ;
Janodet, Jean-Christophe ;
Klaudel, Witold .
ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 :188-203
[50]   A comprehensive survey on network anomaly detection [J].
Fernandes, Gilberto ;
Rodrigues, Joel J. P. C. ;
Carvalho, Luiz Fernando ;
Al-Muhtadi, Jalal F. ;
Proenca, Mario Lemes, Jr. .
TELECOMMUNICATION SYSTEMS, 2019, 70 (03) :447-489