Network Anomaly Detection Using Header Information With Greedy Algorithm

被引:1
作者
Ates, Cagatay [1 ]
Ozdel, Suleyman [1 ]
Yildirim, Metehan [1 ]
Anarim, Emin [1 ]
机构
[1] Bogazici Univ, Elekt Elekt Muhendisligi Bolumu, Istanbul, Turkey
来源
2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) | 2019年
关键词
Entropy; greedy; divergence; anomaly detection; intrusion detection; DDoS; SVM;
D O I
10.1109/siu.2019.8806451
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Network anomaly detection is an important and rapidly growing area. In this paper, we propose a new network anomaly detection method based on the probability distributions of header information. The distances between the distributions of headers are calculated to reflect the main characteristics of the network. These are calculated using Greedy algorithm which eliminates some requirements associated with Kullback-Leibler divergence such as having the same rank of the probability distributions. Then, Support Vector Machine classifier is used in the detection phase to reduce false alarm rates and to make the system adaptive for different networks. This algorithm is tested on the real data collected from Bogazici University network and MIT Darpa 2000 dataset.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Anomaly detection schemes in network intrusion detection [J].
Corvera, S ;
Grau, JB ;
Andina, D .
Soft Computing with Industrial Applications, Vol 17, 2004, 17 :309-313
[32]   Anomaly process detection using negative selection algorithm and classification techniques [J].
Soodeh Hosseini ;
Hossein Seilani .
Evolving Systems, 2021, 12 :769-778
[33]   Traffic anomaly detection algorithm for CAN bus using similarity analysis [J].
Wang, Chao ;
Xu, Xueqiao ;
Xiao, Ke ;
He, Yunhua ;
Yang, Guangcan .
HIGH-CONFIDENCE COMPUTING, 2024, 4 (03)
[34]   Adversarial Algorithm Unrolling Network for Interpretable Mechanical Anomaly Detection [J].
An, Botao ;
Wang, Shibin ;
Qin, Fuhua ;
Zhao, Zhibin ;
Yan, Ruqiang ;
Chen, Xuefeng .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) :6007-6020
[35]   THE DYNAMIC ALGORITHM OF THE DATA PACKETS BASED ON THE NETWORK ANOMALY DETECTION [J].
Li, Min ;
Zhang, Mian .
INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2009, :168-170
[36]   Deep Semisupervised Learning-Based Network Anomaly Detection in Heterogeneous Information Systems [J].
Lutsiv, Nazarii ;
Maksymyuk, Taras ;
Beshley, Mykola ;
Lavriv, Orest ;
Andrushchak, Volodymyr ;
Sachenko, Anatoliy ;
Vokorokos, Liberios ;
Gazda, Juraj .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01) :413-431
[37]   Network Anomaly Detection Based on MRMHC-SVM Algorithm [J].
Li, Wenfa ;
Duan, Miyi ;
Chen, You .
INMIC: 2008 INTERNATIONAL MULTITOPIC CONFERENCE, 2008, :307-312
[38]   Anomaly Detection Algorithm Based on CFSFDP [J].
Ren, Weiwu ;
Zhang, Jianfei ;
Di, Xiaoqiang ;
Lu, Yinan ;
Zhang, Bochen ;
Zhao, Jianping .
JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2020, 24 (04) :453-460
[39]   Network Anomaly Detection Using Memory-Augmented Deep Autoencoder [J].
Min, Byeongjun ;
Yoo, Jihoon ;
Kim, Sangsoo ;
Shin, Dongil ;
Shin, Dongkyoo .
IEEE ACCESS, 2021, 9 :104695-104706
[40]   Network Anomaly Detection Using Random Forests and Entropy of Traffic Features [J].
Yao, Dong ;
Yin, Meijuan ;
Luo, Junyong ;
Zhang, Silong .
2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012), 2012, :926-929