Numerical and experimental analysis of the modulation of fiber Bragg gratings by low-frequency complex acoustic waves

被引:7
作者
Silva, Ricardo E. [1 ,4 ,5 ]
Franco, Marcos A. R. [2 ]
Neves, Paulo T., Jr. [3 ]
Bartelt, Hartmut [4 ,5 ]
Pohl, Alexandre A. P. [1 ]
机构
[1] Fed Univ Technol Parana UTFPR, Curitiba, PR, Brazil
[2] Inst Adv Studies IEAv, Sao Jose Dos Campos, SP, Brazil
[3] Fed Univ Technol Parana UTFPR, Toledo, PR, Brazil
[4] Univ Jena, Jena, Germany
[5] Leibniz Inst Photon Technol IPHT, Jena, Germany
基金
巴西圣保罗研究基金会;
关键词
Acousto-optic devices; Fiber optics components; Fiber Bragg gratings; DISPERSION COMPENSATION; ACOUSTOOPTIC MODULATION; WAVELENGTH SHIFT; FINITE-ELEMENT; OPTICAL-FIBER; PROPAGATION; FILTER;
D O I
10.1016/j.yofte.2016.01.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The acoustically modulated bandwidth of fiber Bragg gratings is simulated and experimentally demonstrated. Finite element and transfer matrix methods are used to investigate a superposition of flexural and longitudinal acoustic waves and the induced complex strain in the grating, for the first time. The results show that the longitudinal strain is suitable to generate a bandwidth-voltage response. The modeling is useful for the design and characterization of acousto-optic modulators, which is attractive for the fast control of several photonic devices. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 24 条
[1]  
Cuadrado-Laborde C, 2009, APPL PHYS B, V99, P95
[2]   Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating [J].
Delgado-Pinar, M ;
Zalvidea, D ;
Díez, A ;
Pérez-Millán, P ;
Andrés, MV .
OPTICS EXPRESS, 2006, 14 (03) :1106-1112
[3]   PROPAGATION AND OPTICAL INTERACTION OF GUIDED ACOUSTIC-WAVES IN 2-MODE OPTICAL FIBERS [J].
ENGAN, HE ;
KIM, BY ;
BLAKE, JN ;
SHAW, HJ .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1988, 6 (03) :428-436
[4]   Finite element analysis of anisotropic optical waveguide with arbitrary index profile [J].
Franco, MAR ;
Passaro, A ;
Cardoso, JR ;
Machado, JM .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1546-1549
[5]   Microstructured optical fiber for residual dispersion compensation over S+C+L+U wavelength bands [J].
Franco, Marcos A. R. ;
Serrao, Valdir A. ;
Sircilli, Francisco .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (9-12) :751-753
[6]   Single-mode optical fiber microbend loss modeling using the finite difference beam propagation method [J].
Jones, SL ;
Murtaza, G ;
Senior, JM ;
Haigh, N .
OPTICAL FIBER TECHNOLOGY, 1998, 4 (04) :471-479
[7]   Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift [J].
Kim, J ;
Bae, J ;
Han, YG ;
Kim, SH ;
Jeong, JM ;
Lee, SB .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (03) :849-851
[8]   Adjustable bandwidth dispersionless bandpass FBG optical filter [J].
Littler, ICM ;
Rochette, M ;
Eggleton, BJ .
OPTICS EXPRESS, 2005, 13 (09) :3397-3407
[9]   100% efficient narrow-band acoustooptic tunable reflector using fiber Bragg grating [J].
Liu, WF ;
Russell, PS ;
Dong, L .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (11) :2006-2009
[10]   Numerical analysis and optimization of optical spectral characteristics of fiber Bragg gratings modulated by a transverse acoustic wave [J].
Luo, Zhengqian ;
Ye, Chenchun ;
Cai, Zhiping ;
Dai, Xianzhe ;
Kang, Yun ;
Xu, Huiying .
APPLIED OPTICS, 2007, 46 (28) :6959-6965