Mixed finite elements for port-Hamiltonian models of von Karman beams

被引:6
作者
Brugnoli, Andrea [1 ]
Rashad, Ramy [1 ]
Califano, Federico [1 ]
Stramigioli, Stefano [1 ]
Matignon, Denis [2 ]
机构
[1] Univ Twente, Enschede, Netherlands
[2] Univ Toulouse, ISAE SUPAERO, Toulouse, France
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 19期
基金
欧洲研究理事会;
关键词
Port-Hamiltonian systems; von Karman beams; Mixed Finite Elements;
D O I
10.1016/j.ifacol.2021.11.076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A port-Hamiltonian formulation of von Karman beams is presented. The variables selection lead to a non linear interconnection operator, while the constitutive laws are linear. The model can be readily discretized by exploiting a coenergy formulation and a mixed finite element method. The mixed formulation does not demand the H-2 regularity requirement typical of standard Galerkin discretization of thin structures. A numerical test is performed to assess the convergence rate of the solution. Copyright (C) 2021 The Authors.
引用
收藏
页码:186 / 191
页数:6
相关论文
共 25 条
  • [1] A port -Hamiltonian formulation of the Navier-Stokes equations for reactive flows
    Altmann, R.
    Schulze, P.
    [J]. SYSTEMS & CONTROL LETTERS, 2017, 100 : 51 - 55
  • [2] Conservative Numerical Methods for the Full von Karman Plate Equations
    Bilbao, Stefan
    Thomas, Olivier
    Touze, Cyril
    Ducceschi, Michele
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (06) : 1948 - 1970
  • [3] Brugnoli A.i., 2020, THESIS ISAE SUPAERO
  • [4] Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates
    Brugnoli, Andrea
    Alazard, Daniel
    Pommier-Budinger, Valerie
    Matignon, Denis
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 75 : 940 - 960
  • [5] Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates
    Brugnoli, Andrea
    Alazard, Daniel
    Pommier-Budinger, Valerie
    Matignon, Denis
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 75 : 961 - 981
  • [6] Geometric and energy-aware decomposition of the Navier-Stokes equations: A port-Hamiltonian approach
    Califano, Federico
    Rashad, Ramy
    Schuller, Frederic P.
    Stramigioli, Stefano
    [J]. PHYSICS OF FLUIDS, 2021, 33 (04)
  • [7] Cardoso-Ribeiro F. L., 2020, IMA J MATH CONTROL I, V37, P1348, DOI DOI 10.1093/imamci/dnaa016
  • [8] A partitioned finite element method for power-preserving discretization of open systems of conservation laws
    Cardoso-Ribeiro, Flavio Luiz
    Matignon, Denis
    Lefevre, Laurent
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2021, 38 (02) : 493 - 533
  • [9] Cardoso-Ribeiro FL, 2019, IEEE DECIS CONTR P, P6881, DOI 10.1109/CDC40024.2019.9030007
  • [10] Ciarlet P.G., 1990, Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis, Recherches en mathematiques appliquees