Twist-film gel spinning of large-diameter high-performance ultra-high molecular weight polyethylene monofilaments

被引:3
|
作者
Fang, Xudong [1 ]
Shi, Jing [1 ]
Wyatt, Tom [1 ]
Yao, Donggang [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
twist-film; gel spinning; ultra-high molecular weight polyethylene; fiber; high strength; MECHANICAL-PROPERTIES; HIGH-MODULUS; FIBERS; SOLVENT; CRYSTALLINITY; ORIENTATION; FILAMENTS; PHASES; TAPES;
D O I
10.1177/0040517516669079
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
A twist-film gel spinning process was developed for large-diameter high-performance ultra-high molecular weight polyethylene (UHMWPE) monofilaments. By using polybutene as a spin-solvent, film twisting was demonstrated to be an effective method for solvent removal; approximately 70% of solvent contained in the gel film can be removed simply by film twisting. This mechanical solvent removal process also makes conventional solvent extraction proceed significantly faster. Besides improved solvent extraction efficiency, large-diameter high-strength UHMWPE monofilaments (with diameters of about 80 mu m and strength exceeding 3.2GPa) can be produced with this process, which is difficult to achieve using conventional processes. The capability of making large-diameter high-strength monofilaments may allow new products of UHMWPE to be developed in a number of high-performance applications.
引用
收藏
页码:2323 / 2336
页数:14
相关论文
共 50 条
  • [31] Gas-phase polymerization of ultra-high molecular weight polyethylene with decreased entanglement density
    do Rosario, Roberta Lopes
    Christakopoulos, Fotis
    Tervoort, Theo A. A.
    Brunel, Fabrice
    McKenna, Timothy F. L.
    JOURNAL OF POLYMER SCIENCE, 2023, 61 (12) : 1183 - 1195
  • [32] Effects of Mixing Ultra-High Molecular Weight Polyethylene on Morphology and Mechanical Properties of Polyethylene Solids
    Kida, Takumitsu
    Watanabe, Shiori
    Kasai, Nobuhiro
    Nagahama, Takahiro
    Kamitanaka, Takashi
    Takeshita, Hiroki
    Tokumitsu, Katsuhisa
    NIHON REOROJI GAKKAISHI, 2024, 52 (04) : 265 - 271
  • [33] Ultradrawing novel ultra-high molecular weight polyethylene fibers filled with bacterial cellulose nanofibers
    Yeh, Jen-taut
    Tsai, Chih-Chen
    Wang, Chuen-Kai
    Shao, Jhih-Wun
    Xiao, Ming-Zheng
    Chen, Su-chen
    CARBOHYDRATE POLYMERS, 2014, 101 : 1 - 10
  • [34] Natural fiber-reinforced high-density polyethylene composite hybridized with ultra-high molecular weight polyethylene
    Ning, Haibin
    Pillay, Selvum
    Lu, Na
    Zainuddin, Shaik
    Yan, Yongzhe
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (15) : 2119 - 2129
  • [35] Crystallite Sizes and Lattice Distortions of Gel-Spun Ultra-High Molecular Weight Polyethylene Fibers
    Xiao-Ping Hu
    You-Lo Hsieh
    Polymer Journal, 1998, 30 : 771 - 774
  • [36] Uniaxial and biaxial ratcheting behavior of ultra-high molecular weight polyethylene
    Gao, Hong
    Wang, Jianhai
    Li, Fan
    Gao, Lilan
    Zhang, Zhe
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 89 : 295 - 306
  • [37] Structure and mechanical properties of porous ultra-high molecular weight polyethylene
    Xiao, Jiumei
    INTELLIGENT SYSTEM AND APPLIED MATERIAL, PTS 1 AND 2, 2012, 466-467 : 332 - 335
  • [38] Developing Triboengineering Composites Based on Ultra-High Molecular Weight Polyethylene
    E. S. Kolesova
    O. V. Gogoleva
    P. N. Petrova
    M. A. Markova
    A. A. Chirikov
    Inorganic Materials: Applied Research, 2021, 12 : 885 - 888
  • [39] The Isothermal Melting Kinetics of Ultra-High Molecular Weight Polyethylene Crystals
    Xue, Jianwei
    Lu, Yaguang
    Wang, Binghua
    Chen, Jingbo
    Shen, Changyu
    Zhang, Bin
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024, 45 (09)
  • [40] Developing Triboengineering Composites Based on Ultra-High Molecular Weight Polyethylene
    Kolesova, E. S.
    Gogoleva, O., V
    Petrova, P. N.
    Markova, M. A.
    Chirikov, A. A.
    INORGANIC MATERIALS-APPLIED RESEARCH, 2021, 12 (04) : 885 - 888