SquiggleNet: real-time, direct classification of nanopore signals

被引:31
作者
Bao, Yuwei [1 ]
Wadden, Jack [1 ,2 ]
Erb-Downward, John R. [3 ]
Ranjan, Piyush [3 ]
Zhou, Weichen [4 ]
McDonald, Torrin L. [5 ]
Mills, Ryan E. [4 ,5 ]
Boyle, Alan P. [4 ,5 ]
Dickson, Robert P. [3 ,6 ,7 ]
Blaauw, David [3 ]
Welch, Joshua D. [1 ,4 ]
机构
[1] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Div Pulm & Crit Care Med, Med Sch, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Univ Michigan Med, Dept Human Genet, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Microbiol & Immunol, Med Sch, Ann Arbor, MI 48109 USA
[7] Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
Deep learning; Read-until; Oxford Nanopore; Raw signal; Real-time; IDENTIFICATION; METHYLATION;
D O I
10.1186/s13059-021-02511-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 s of sequencing data, the classifier achieves significantly higher accuracy than base calling followed by sequence alignment. Our approach is also faster and requires an order of magnitude less memory than alignment-based approaches. SquiggleNet distinguished human from bacterial DNA with over 90% accuracy, generalized to unseen bacterial species in a human respiratory meta genome sample, and accurately classified sequences containing human long interspersed repeat elements.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Real-time Anomaly Detection and Classification in Streaming PMU Data
    Hannon, Christopher
    Deka, Deepjyoti
    Jin, Dong
    Vuffray, Marc
    Lokhov, Andrey Y.
    2021 IEEE MADRID POWERTECH, 2021,
  • [42] Polynomial classification model for real-time fall prediction system
    Hemmatpour, Masoud
    Karimshoushtari, Milad
    Ferrero, Renato
    Montrucchio, Bartolomeo
    Rebaudengo, Maurizio
    Novara, Carlo
    2017 IEEE 41ST ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2017, : 973 - 978
  • [43] A deep learning-based approach for real-time rodent detection and behaviour classification
    Cocoma-Ortega, J. Arturo
    Patricio, Felipe
    Limon, Ilhuicamina Daniel
    Martinez-Carranza, Jose
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 30329 - 30350
  • [44] Real-time optical acquisition and classification system for microbiology applications
    Marques, Telmo
    Correia, Pedro
    Banos, Manuel
    Pinho, Henrique
    Mateus, Dina
    Goncalves, Rui
    2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024, 2024, : 711 - 716
  • [45] Real-Time Object Detection and Classification by UAV Equipped with SAR
    Gromada, Krzysztof
    Siemiatkowska, Barbara
    Stecz, Wojciech
    Plochocki, Krystian
    Wozniak, Karol
    SENSORS, 2022, 22 (05)
  • [46] Real-time detection and discrimination of visual perception using electrocorticographic signals
    Kapeller, C.
    Ogawa, H.
    Schalk, G.
    Kunii, N.
    Coon, W. G.
    Scharinger, J.
    Guger, C.
    Kamada, K.
    JOURNAL OF NEURAL ENGINEERING, 2018, 15 (03)
  • [47] Real-time restoration of nonstationary biomedical signals under additive noises
    Hori, J
    Saitoh, Y
    Kiryu, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1999, E82D (10) : 1409 - 1416
  • [48] Real-Time Hierarchical Classification of Time Series Data for Locomotion Mode Detection
    Narayan, Ashwin
    Reyes, Francisco Anaya
    Ren, Meifeng
    Haoyong, Yu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) : 1749 - 1760
  • [49] Real-Time Gait Anomaly Detection Using SVM Time Series Classification
    Rostovski, Jakob
    Krivosei, Andrei
    Kuusik, Alar
    Alam, Muhammad Mahtab
    Ahmadov, Ulvi
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 1389 - 1394
  • [50] Adaptive Deep Learning for Soft Real-Time Image Classification
    Chai, Fangming
    Kang, Kyoung-Don
    TECHNOLOGIES, 2021, 9 (01)