SquiggleNet: real-time, direct classification of nanopore signals

被引:31
作者
Bao, Yuwei [1 ]
Wadden, Jack [1 ,2 ]
Erb-Downward, John R. [3 ]
Ranjan, Piyush [3 ]
Zhou, Weichen [4 ]
McDonald, Torrin L. [5 ]
Mills, Ryan E. [4 ,5 ]
Boyle, Alan P. [4 ,5 ]
Dickson, Robert P. [3 ,6 ,7 ]
Blaauw, David [3 ]
Welch, Joshua D. [1 ,4 ]
机构
[1] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Div Pulm & Crit Care Med, Med Sch, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Univ Michigan Med, Dept Human Genet, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Microbiol & Immunol, Med Sch, Ann Arbor, MI 48109 USA
[7] Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
Deep learning; Read-until; Oxford Nanopore; Raw signal; Real-time; IDENTIFICATION; METHYLATION;
D O I
10.1186/s13059-021-02511-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 s of sequencing data, the classifier achieves significantly higher accuracy than base calling followed by sequence alignment. Our approach is also faster and requires an order of magnitude less memory than alignment-based approaches. SquiggleNet distinguished human from bacterial DNA with over 90% accuracy, generalized to unseen bacterial species in a human respiratory meta genome sample, and accurately classified sequences containing human long interspersed repeat elements.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Real-time spatial normalization for dynamic gesture classification
    Zeghoud, Sofiane
    Ali, Saba Ghazanfar
    Ertugrul, Egemen
    Kamel, Aouaidjia
    Sheng, Bin
    Li, Ping
    Chi, Xiaoyu
    Kim, Jinman
    Mao, Lijuan
    VISUAL COMPUTER, 2022, 38 (04) : 1345 - 1357
  • [32] Joint Detection and Active Cancellation of Snoring Signals in Real-Time
    Serafini, Luca
    Bruschi, Valeria
    Nobilit, Stefano
    Principi, Emanuele
    Cecchi, Stefania
    Squartini, Stefano
    2023 4TH INTERNATIONAL SYMPOSIUM ON THE INTERNET OF SOUNDS, 2023, : 295 - 303
  • [33] Real-Time Compressed Sensing Reconstruction for Wearable Physiological Signals
    Cheng Y.-F.
    Ye Y.-L.
    Hou M.-S.
    He W.-W.
    Li Y.-X.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2021, 50 (01): : 36 - 42
  • [34] Real-time spatial normalization for dynamic gesture classification
    Sofiane Zeghoud
    Saba Ghazanfar Ali
    Egemen Ertugrul
    Aouaidjia Kamel
    Bin Sheng
    Ping Li
    Xiaoyu Chi
    Jinman Kim
    Lijuan Mao
    The Visual Computer, 2022, 38 : 1345 - 1357
  • [35] Nanopore Biosensor for Label-Free and Real-Time Detection of Anthrax Lethal Factor
    Wang, Liang
    Han, Yujing
    Zhou, Shuo
    Wang, Guihua
    Guan, Xiyun
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) : 7334 - 7339
  • [36] Real-time classification of forearm electromyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control
    Momen, Kaveh
    Krishnan, Sridhar
    Chau, Tom
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2007, 15 (04) : 535 - 542
  • [37] Real-Time Classification of Rubber Wood Boards Using an SSR-Based CNN
    Liu, Shihui
    Jiang, Wenbo
    Wu, Lehui
    Wen, He
    Liu, Min
    Wang, Yaonan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8725 - 8734
  • [38] A deep learning-based approach for real-time rodent detection and behaviour classification
    J. Arturo Cocoma-Ortega
    Felipe Patricio
    Ilhuicamina Daniel Limon
    Jose Martinez-Carranza
    Multimedia Tools and Applications, 2022, 81 : 30329 - 30350
  • [39] Convolutional and Recurrent Neural Networks for Real-time Data Classification
    Abroyan, Narek
    2017 SEVENTH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGY (INTECH 2017), 2017, : 42 - 45
  • [40] Lightweight Real-Time Point Cloud Classification Network LightPointNet
    Bai J.
    Si Q.
    Qin F.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (04): : 612 - 621