SquiggleNet: real-time, direct classification of nanopore signals

被引:31
|
作者
Bao, Yuwei [1 ]
Wadden, Jack [1 ,2 ]
Erb-Downward, John R. [3 ]
Ranjan, Piyush [3 ]
Zhou, Weichen [4 ]
McDonald, Torrin L. [5 ]
Mills, Ryan E. [4 ,5 ]
Boyle, Alan P. [4 ,5 ]
Dickson, Robert P. [3 ,6 ,7 ]
Blaauw, David [3 ]
Welch, Joshua D. [1 ,4 ]
机构
[1] Univ Michigan, Dept Comp Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Div Pulm & Crit Care Med, Med Sch, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Univ Michigan Med, Dept Human Genet, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Microbiol & Immunol, Med Sch, Ann Arbor, MI 48109 USA
[7] Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
关键词
Deep learning; Read-until; Oxford Nanopore; Raw signal; Real-time; IDENTIFICATION; METHYLATION;
D O I
10.1186/s13059-021-02511-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present SquiggleNet, the first deep-learning model that can classify nanopore reads directly from their electrical signals. SquiggleNet operates faster than DNA passes through the pore, allowing real-time classification and read ejection. Using 1 s of sequencing data, the classifier achieves significantly higher accuracy than base calling followed by sequence alignment. Our approach is also faster and requires an order of magnitude less memory than alignment-based approaches. SquiggleNet distinguished human from bacterial DNA with over 90% accuracy, generalized to unseen bacterial species in a human respiratory meta genome sample, and accurately classified sequences containing human long interspersed repeat elements.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] SquiggleNet: real-time, direct classification of nanopore signals
    Yuwei Bao
    Jack Wadden
    John R. Erb-Downward
    Piyush Ranjan
    Weichen Zhou
    Torrin L. McDonald
    Ryan E. Mills
    Alan P. Boyle
    Robert P. Dickson
    David Blaauw
    Joshua D. Welch
    Genome Biology, 22
  • [2] Real-Time Stochastic Detection of Multiple Neurotransmitters with a Protein Nanopore
    Boersma, Arnold J.
    Brain, Keith L.
    Bayley, Hagan
    ACS NANO, 2012, 6 (06) : 5304 - 5308
  • [3] Real-time Event Recognition and Analysis System for Nanopore Study
    Wang Hui-Feng
    Huang Fei
    Gu Zhen
    Hu Zheng-Li
    Ying Yi-Lun
    Yan Bing-Yong
    Long Yi-Tao
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2018, 46 (06) : 843 - 850
  • [4] Scaffolding and completing genome assemblies in real-time with nanopore sequencing
    Minh Duc Cao
    Son Hoang Nguyen
    Ganesamoorthy, Devika
    Elliott, Alysha G.
    Cooper, Matthew A.
    Coin, Lachlan J. M.
    NATURE COMMUNICATIONS, 2017, 8
  • [5] Real-Time Visual Concept Classification
    Uijlings, Jasper R. R.
    Smeulders, Arnold W. M.
    Scha, Remko J. H.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2010, 12 (07) : 665 - 681
  • [6] Real-Time Gesture Detection Based on Machine Learning Classification of Continuous Wave Radar Signals
    Ehrnsperger, Matthias G.
    Brenner, Thomas
    Hoese, Henri L.
    Siart, Uwe
    Eibert, Thomas F.
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 8310 - 8322
  • [7] Real-time gait classification based on fuzzy associative memory
    Zhang, Jun
    Liu, Zhijing
    Zhou, Hong
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2010, 10 (3-4) : 263 - 271
  • [8] Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices
    Sanderson, Nicholas D.
    Street, Teresa L.
    Foster, Dona
    Swann, Jeremy
    Atkins, Bridget L.
    Brent, Andrew J.
    McNally, Martin A.
    Oakley, Sarah
    Taylor, Adrian
    Peto, Tim E. A.
    Crook, Derrick W.
    Eyre, David W.
    BMC GENOMICS, 2018, 19
  • [9] Multivariate Kalman filter regression of confounding physiological signals for real-time classification of fNIRS data
    Ortega-Martinez, Antonio
    Von Luehmann, Alexander
    Farzam, Parya
    Rogers, De'Ja
    Mugler, Emily M.
    Boas, David A.
    Yucel, Meryem A.
    NEUROPHOTONICS, 2022, 9 (02)
  • [10] Real-time classification of handball game situations
    Cabado, Bruno
    Guijarro-Berdinas, Bertha
    Padron, Emilio J.
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 686 - 691