Investigation on forced air-cooling strategy of battery thermal management system considering the inconsistency of battery cells

被引:64
作者
Wang, Chun [1 ]
Xi, Huan [1 ]
Wang, Meiwei [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermo Fluid Sci & Engn, Minist Educ, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery thermal management system; Forced air cooling; Reciprocating flow; Variable vents; Cooling control scenarios; LI-ION BATTERY; PHASE-CHANGE MATERIAL; PERFORMANCE; PACK; OPTIMIZATION; DESIGN; FLOW;
D O I
10.1016/j.applthermaleng.2022.118841
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper proposes a thermal management system (BTMS) model with novel cooling scenarios by combining extra vents and reciprocating airflow. Primarily, the parameter settings and cooling scenarios of the reversible airflow are discussed, and the optimization brings a 4.0 K maximum temperature drop and 50.2% decrease of maximum temperature difference compared to the uni-directional airflow. Then four cases corresponding to four different locations of the abnormal cell with higher generation rate are processed to reveal the effectiveness of adding the variable-vents scenarios to the reciprocating airflow, which minimize the maximum temperature by 4.12 K, 6.52 K, 4.25 K and 3.24 K, and decrease the maximum temperature difference by 1.55 K, 1.95 K, 1.5 K and 1.24 K, respectively, compared to the optimized reciprocating flow alone. The results show that the appropriate extra vents scenario arrangement integrated with the reciprocating flow can bring a more uniform temperature field, which provide a practical reference for the design method and control strategy for the BTMS system.
引用
收藏
页数:17
相关论文
共 50 条
[1]  
Akkaldevi C., 2021, Electrochem, V2, P643, DOI [10.3390/ELECTROCHEM2040040, DOI 10.3390/ELECTROCHEM2040040]
[2]   Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams [J].
Alipanah, Morteza ;
Li, Xianglin .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 :1159-1168
[3]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[4]   Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement [J].
Chen, Kai ;
Song, Mengxuan ;
Wei, Wei ;
Wang, Shuangfeng .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 132 :309-321
[5]   Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system [J].
Chen, Kai ;
Chen, Yiming ;
Li, Zeyu ;
Yuan, Fang ;
Wang, Shuangfeng .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 :393-401
[6]  
[戴海峰 Dai Haifeng], 2014, [汽车工程, Automotive Engineering], V36, P181
[7]   Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model [J].
Dan, Dan ;
Yao, Chengning ;
Zhang, Yangjun ;
Zhang, Hu ;
Zeng, Zezhi ;
Xu, Xiaoming .
APPLIED THERMAL ENGINEERING, 2019, 162
[8]   Hybrid cooling based battery thermal management using composite phase change materials and forced convection [J].
El Idi, Mohamed Moussa ;
Karkri, Mustapha ;
Tankari, Mahamadou Abdou ;
Vincent, Stephane .
JOURNAL OF ENERGY STORAGE, 2021, 41 (41)
[9]   Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs [J].
Feng, Fei ;
Hu, Xiaosong ;
Hu, Lin ;
Hu, Fengling ;
Li, Yang ;
Zhang, Lei .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 112 :102-113
[10]   Thermal management of batteries employing active temperature control and reciprocating cooling flow [J].
He, Fan ;
Ma, Lin .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 83 :164-172