Hitting forbidden subgraphs in graphs of bounded treewidth

被引:7
|
作者
Cygan, Marek [1 ]
Marx, Daniel [2 ]
Pilipczuk, Marcin [3 ]
Pilipczuk, Michal [1 ]
机构
[1] Univ Warsaw, Inst Informat, Warsaw, Poland
[2] Hungarian Acad Sci MTA SZTAKI, Inst Comp Sci & Control, Budapest, Hungary
[3] Univ Warwick, Dept Comp Sci, Coventry, W Midlands, England
基金
欧洲研究理事会;
关键词
Fixed-parameter tractability; Treewidth; Forbidden subgraphs; COMPLEXITY;
D O I
10.1016/j.ic.2017.04.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the complexity of a generic hitting problem H-Subgraph Hitting, where given a fixed pattern graph Hand an input graph G, the task is to find a set X subset of V(G) of minimum size that hits all subgraphs of G isomorphic to H. In the colorful variant of the problem, each vertex of G is precolored with some color from V(H) and we require to hit only H-subgraphs with matching colors. Standard techniques shows that for every fixed H, the problem is fixed-parameter tractable parameterized by the treewidth of G; however, it is not clear how exactly the running time should depend on treewidth. For the colorful variant, we demonstrate matching upper and lower bounds showing that the dependence of the running time on treewidth of G is tightly governed by mu(H), the maximum size of a minimal vertex separator in H. That is, we show for every fixed H that, on a graph of treewidth t, the colorful problem can be solved in time 2(O(t mu(H))) center dot |V(G)|, but cannotbe solved in time 2(0(t mu(H))) center dot |V(G)|(0(1)), assuming the Exponential Time Hypothesis (ETH). Furthermore, we give some preliminary results showing that, in the absence of colors, the parameterized complexity landscape of H-Subgraph Hittingis much richer. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 82
页数:21
相关论文
共 50 条
  • [1] Hitting forbidden induced subgraphs on bounded treewidth graphs
    Sau, Ignasi
    Souza, Ueverton dos Santos
    INFORMATION AND COMPUTATION, 2021, 281
  • [2] HITTING MINORS ON BOUNDED TREEWIDTH GRAPHS. IV. AN OPTIMAL ALGORITHM
    Baste, Julien
    Sau, Ignasi
    Thilikos, Dimitrios M.
    SIAM JOURNAL ON COMPUTING, 2023, 52 (04) : 865 - 912
  • [3] Hitting minors on bounded treewidth graphs. III. Lower bounds
    Baste, Julien
    Sau, Ignasi
    Thilikos, Dimitrios M.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 109 : 56 - 77
  • [4] Waypoint routing on bounded treewidth graphs
    Schierreich, Simon
    Suchy, Ondrej
    INFORMATION PROCESSING LETTERS, 2022, 173
  • [5] Recognizing Map Graphs of Bounded Treewidth
    Patrizio Angelini
    Michael A. Bekos
    Giordano Da Lozzo
    Martin Gronemann
    Fabrizio Montecchiani
    Alessandra Tappini
    Algorithmica, 2024, 86 : 613 - 637
  • [6] Recognizing Map Graphs of Bounded Treewidth
    Angelini, Patrizio
    Bekos, Michael A.
    Da Lozzo, Giordano
    Gronemann, Martin
    Montecchiani, Fabrizio
    Tappini, Alessandra
    ALGORITHMICA, 2024, 86 (02) : 613 - 637
  • [7] HITTING MINORS ON BOUNDED TREEWIDTH GRAPHS. I. GENERAL UPPER BOUNDS
    Baste, Julien
    Sau, Ignasi
    Thilikos, Dimitrios M.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1623 - 1648
  • [8] Characterizing paths graphs on bounded degree trees by minimal forbidden induced subgraphs
    Alcon, L.
    Gutierrez, M.
    Mazzoleni, M. P.
    DISCRETE MATHEMATICS, 2015, 338 (01) : 103 - 110
  • [9] Integrating and Sampling Cuts in Bounded Treewidth Graphs
    Bezakova, Ivona
    Chambers, Erin W.
    Fox, Kyle
    ADVANCES IN THE MATHEMATICAL SCIENCES, 2016, 6 : 401 - 415
  • [10] Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms
    Baste, Julien
    Sau, Ignasi
    Thilikos, Dimitrios M.
    THEORETICAL COMPUTER SCIENCE, 2020, 814 : 135 - 152