Tris(2-benzimidazolylmethyl)amine-Directed Synthesis of Single-Atom Nickel Catalysts for Electrochemical CO Production from CO2

被引:58
|
作者
Jeong, Hui-Yun [1 ]
Balamurugan, Mani [1 ]
Choutipalli, Venkata Surya Kumar [4 ,5 ]
Jo, Janghyun [1 ]
Baik, Hionsuck [6 ]
Subramanian, Venkatesan [4 ,5 ]
Kim, Miyoung [1 ]
Sim, Uk [3 ]
Nam, Ki Tae [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Res Inst Adv Mat, Seoul 08826, South Korea
[3] Chonnam Natl Univ, Dept Mat Sci & Engn, Gwangju 61186, South Korea
[4] Cent Leather Res Inst, CSIR, Inorgan & Phys Chem Lab, Madras 600020, Tamil Nadu, India
[5] Acad Sci & Innovat Res AcSIR, CSIR CLRI Campus, Madras 600020, Tamil Nadu, India
[6] Korea Basic Sci Inst, Seoul Ctr Analyt Res, Anam Ro 145, Seoul 136713, South Korea
基金
新加坡国家研究基金会;
关键词
carbon dioxide reduction; electrochemistry; graphene; single-atom catalyst; NITROGEN-DOPED CARBON; OXYGEN REDUCTION; DENSITY FUNCTIONALS; METAL-ELECTRODES; ACTIVE-SITES; ADSORBED CO; ELECTROCATALYSTS; EFFICIENT; CONVERSION; DIOXIDE;
D O I
10.1002/chem.201803615
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical reduction of carbon dioxide (CO2) to value-added products is a promising approach to reducing excess CO2 in the atmosphere. However, the development of electrocatalysts for highly selective and efficient electrochemical CO2 reduction has been challenging because protons are usually easier to reduce than CO2 in an aqueous electrolyte. Recently, single-atom catalysts (SACs) have been suggested as candidate CO2 reduction catalysts due to their unique catalytic properties. To prepare single-atom metal active sites, the stabilization of metal atoms over conductive supports such as graphene sheets to prevent metal aggregation is crucial. To address this issue, a facile method was developed to prepare single-atom nickel active sites on reduced graphene oxide (RGO) sheets for the selective production of carbon monoxide (CO) from CO2. The tris(2-benzimidazolylmethyl)amine (NTB) ligand was introduced as a linker that can homogeneously disperse nickel atoms on the graphene oxide (GO) sheets. Because the NTB ligands form strong interactions with the GO sheets by pi-pi interactions and with nickel ions by ligation, they can effectively stabilize nickel ions on GO sheets by forming Ni(NTB)-GO complexes. High-temperature annealing of Ni(NTB)-GO under inert atmosphere produces nickel- and nitrogen-doped reduced graphene oxide sheets (Ni-N-RGO) with single-atom Ni-N-4 active sites. Ni-N-RGO shows high CO2 reduction selectivity in the reduction of CO2 to CO with 97 % faradaic efficiency at -0.8 V vs. RHE (reversible hydrogen electrode).
引用
收藏
页码:18444 / 18454
页数:11
相关论文
共 50 条
  • [31] Ultrastable nickel single-atom catalysts with high activity and selectivity for electrocatalytic CO2 methanation
    Ling-Chan Tian
    Jin-Nian Hu
    Yang Meng
    Jin-Xia Liang
    Chun Zhu
    Jun Li
    Nano Research, 2023, 16 : 8987 - 8995
  • [32] Direct Electrochemical Synthesis of Acetamide from CO2 and N2 on a Single-Atom Alloy Catalyst
    Wang, Jingnan
    Li, Sha
    Liu, Qiang
    Zhao, Kaiheng
    Yang, Yongan
    Wang, Xi
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) : 53436 - 53445
  • [33] Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2
    Lu, Yubing
    Zhang, Zihao
    Wang, Huamin
    Wang, Yong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 292
  • [34] Theoretical investigation on graphene-supported single-atom catalysts for electrochemical CO2 reduction
    Wang, Xiting
    Niu, Huan
    Liu, Yuanshuang
    Shao, Chen
    Robertson, John
    Zhang, Zhaofu
    Guo, Yuzheng
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (24) : 8465 - 8472
  • [35] Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts
    Li, Xiaojiao
    Yu, Xiaohu
    Yu, Qi
    SCIENCE CHINA-MATERIALS, 2023, 66 (10) : 3765 - 3781
  • [36] Theoretical insights into lanthanide rare earth single-atom catalysts for electrochemical CO2 reduction
    Liu, Jing
    Sun, Lei
    Sun, Yuying
    Sun, Jikai
    Pan, Yuwei
    Xu, Mengqian
    Lang, Yunjie
    Zhai, Dong
    Deng, Weiqiao
    Li, Yamin
    Yang, Li
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (26) : 16183 - 16189
  • [37] Metal-organic framework derived single-atom catalysts for electrochemical CO2 reduction
    Xie, Mengna
    Wang, Jiawei
    Du, Xian-Long
    Gao, Na
    Liu, Tao
    Li, Zhi
    Xiao, GuoPing
    Li, Tao
    Wang, Jian-Qiang
    RSC ADVANCES, 2022, 12 (50) : 32518 - 32525
  • [38] Structural rule of N-coordinated single-atom catalysts for electrochemical CO2 reduction
    Lou, Zhenxin
    Li, Wenjing
    Yuan, Haiyang
    Hou, Yu
    Yang, Huagui
    Wang, Haifeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) : 3585 - 3594
  • [39] MXene-Based Single-Atom Catalysts for Electrochemical Reduction of CO2 to Hydrocarbon Fuels
    Athawale, A.
    Abraham, B. Moses
    Jyothirmai, M. V.
    Singh, Jayant K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (51): : 24542 - 24551
  • [40] Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction
    Wang, Bingqing
    Chen, Shenghua
    Zhang, Zedong
    Wang, Dingsheng
    SMARTMAT, 2022, 3 (01): : 84 - 110