Graft survival prediction in liver transplantation using artificial neural network models

被引:28
|
作者
Raji, C. G. [1 ]
Chandra, Vinod S. S. [2 ]
机构
[1] Manonmaniam Sundaranar Univ, Dept Comp Sci & Engn, Tirunelveli, Tamil Nadu, India
[2] Univ Kerala, Ctr Comp, Thiruvananthapuram, Kerala, India
关键词
LT; MELD; Neural network; Survival prediction; RISK;
D O I
10.1016/j.jocs.2016.05.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of computer based learning models in medical domain has become a significant area of research. Organ transplantation is one of the main areas where prognosis models are being used for predicting the survival of patients. Post transplantation mortality rate is reduced if there exists an intelligent system that can pick out the correct donor-recipients pairs from a pool of donor and recipient data. In this paper, we propose a survival prediction model to define three month mortality of patients after Liver Transplantation. We used an Artificial Neural Network model for the survival rate of Liver Transplantation. The data for the study was gathered from United Network for Organ Sharing transplant registry. The main objective of the study is to develop a model for short-term survival prediction of liver patients. With 10-fold cross validation we were divided the whole data into training and test data which gives an accuracy of 99.74% by Multilayer Perceptron Artificial Neural Network model. We also compared the model with other classification models using various error performance measures. To ensure accuracy we experimented our model with existing models and proved the result. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 78
页数:7
相关论文
共 50 条
  • [41] Artificial neural network models for prediction of intestinal permeability of oligopeptides
    Eunkyoung Jung
    Junhyoung Kim
    Minkyoung Kim
    Dong Hyun Jung
    Hokyoung Rhee
    Jae-Min Shin
    Kihang Choi
    Sang-Kee Kang
    Min-Kook Kim
    Cheol-Heui Yun
    Yun-Jaie Choi
    Seung-Hoon Choi
    BMC Bioinformatics, 8
  • [42] Nonlinear Survival Regression Using Artificial Neural Network
    Biglarian, Akbar
    Bakhshi, Enayatollah
    Baghestani, Ahmad Reza
    Gohari, Mahmood Reza
    Rahgozar, Mehdi
    Karimloo, Masoud
    JOURNAL OF PROBABILITY AND STATISTICS, 2013, 2013
  • [43] Predicting the Kidney Graft Survival Using Optimized African Buffalo-Based Artificial Neural Network
    Chawla, Riddhi
    Balaji, S.
    Alabdali, Raed N.
    Naguib, Ibrahim A.
    Hamed, Nadir O.
    Zahran, Heba Y.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [44] Graft survival in pediatric liver transplantation
    Langham, MR
    Tzakis, AG
    Gonzalez-Peralta, R
    Thompson, JF
    Rosen, CB
    Nery, JR
    Reed, AI
    Ruiz, P
    VanderWerf, WJ
    Hemming, A
    Howard, RJ
    JOURNAL OF PEDIATRIC SURGERY, 2001, 36 (08) : 1205 - 1209
  • [45] Prediction of air pollutants by using an artificial neural network
    Sohn, SH
    Oh, SC
    Yeo, YK
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1999, 16 (03) : 382 - 387
  • [46] Pseudorange Correction Prediction Using Artificial Neural Network
    Alim, Onsy Abdel
    El-Rabbany, Ahmed
    Rashsd, Refaat
    Mohasseb, Mohamed
    PROCEEDINGS OF THE 2006 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION - NTM 2006, 2006, : 396 - 399
  • [47] Prediction of the plasma distribution using an artificial neural network
    李炜
    陈俊芳
    王腾
    Chinese Physics B, 2009, (06) : 2441 - 2444
  • [48] Prediction of disturbances in the ionosphere by using the artificial neural network
    Liu, W
    Jiao, PN
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2001, 44 (01): : 24 - 30
  • [49] POSTTRANSPLANT TUBERCULOSIS PREDICTION USING ARTIFICIAL NEURAL NETWORK
    Starostina, Anna
    Parabina, Elena
    Maslikova, Ulyana
    Tsygankov, Igor
    Yaremin, Boris
    TRANSPLANT INTERNATIONAL, 2019, 32 : 413 - 413
  • [50] Prediction of rubber vulcanization using an artificial neural network
    Lubura, Jelena D.
    Kojic, Predrag
    Pavlicevic, Jelena
    Ikonic, Bojana
    Omorjan, Radovan
    Bera, Oskar
    HEMIJSKA INDUSTRIJA, 2021, 75 (05) : 277 - 283