Efficient preconditioning for sequences of parametric complex symmetric linear systems

被引:0
|
作者
Bertaccini, D [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, Ist Guido Castelnuovo, I-00185 Rome, Italy
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2004年 / 18卷
关键词
complex symmetric linear systems; preconditioning; parametric algebraic linear systems; incomplete factorizations; sparse approximate inverses;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solution of sequences of complex symmetric linear systems of the form A(j)x(j)=b(j), j=0,...,s, A(j)=A+alpha E-j(j), A Hermitian, E-0,...,E-s complex diagonal matrices and alpha(0),...,alpha(s) scalar complex parameters arise in a variety of challenging problems. This is the case of time dependent PDEs; lattice gauge computations in quantum chromodynamics; the Helmholtz equation; shift-and-invert and Jacobi-Davidson algorithms for large-scale eigenvalue calculations; problems in control theory and many others. If A is symmetric and has real entries then A(j) is complex symmetric. The case A Hermitian positive semidefinite, Re(alpha(j))>= 0 and such that the diagonal entries of E-j, j=0,...,s have non negative real part is considered here. Some strategies based on the update of incomplete factorizations of the matrix A and A(-1) are introduced and analyzed. The numerical solution of sequences of algebraic linear systems from the discretization of the real and complex Helmholtz equation and of the diffusion equation in a rectangle illustrate the performance of the proposed approaches.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 50 条
  • [41] Parameterized GSOR Method for a Class of Complex Symmetric Systems of Linear Equations
    Wu, Yu-Jiang
    Zhang, Wei-Hong
    Li, Xi-An
    Yang, Ai-Li
    JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (01): : 18 - 29
  • [42] A generalized shift-splitting preconditioner for complex symmetric linear systems
    Chen, Cai-Rong
    Ma, Chang-Feng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 691 - 700
  • [43] A fully structured preconditioner for a class of complex symmetric indefinite linear systems
    Zheng, Zhong
    Chen, Jing
    Chen, Yue-Fen
    BIT NUMERICAL MATHEMATICS, 2022, 62 (02) : 667 - 680
  • [44] Modified HSS iteration methods for a class of complex symmetric linear systems
    Bai, Zhong-Zhi
    Benzi, Michele
    Chen, Fang
    COMPUTING, 2010, 87 (3-4) : 93 - 111
  • [45] Lopsided PMHSS iteration method for a class of complex symmetric linear systems
    Xu Li
    Ai-Li Yang
    Yu-Jiang Wu
    Numerical Algorithms, 2014, 66 : 555 - 568
  • [46] A note on preconditioning for indefinite linear systems
    Murphy, MF
    Golub, GH
    Wathen, AJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) : 1969 - 1972
  • [47] Constraint preconditioning for indefinite linear systems
    Keller, C
    Gould, NIM
    Wathen, AJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1300 - 1317
  • [48] A preconditioning technique for indefinite linear systems
    Komzsik, L
    Poschmann, P
    Sharapov, I
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 26 (03) : 253 - 258
  • [49] A preconditioned version of the MBP iteration method for a class of complex symmetric linear systems
    Xie, Xiaofeng
    Huang, Zhengge
    Cui, Jingjing
    Li, Beibei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03)
  • [50] ON EULER PRECONDITIONED SHSS ITERATIVE METHOD FOR A CLASS OF COMPLEX SYMMETRIC LINEAR SYSTEMS
    Li, Cheng-Liang
    Ma, Chang-Feng
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1607 - 1627