Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors

被引:49
作者
Tabata, Seiichiro [1 ,2 ]
Isshiki, Yusuke [1 ,2 ]
Watanabe, Masayoshi [1 ,2 ]
机构
[1] Yokohama Natl Univ, Dept Chem & Biotechnol, Yokohama, Kanagawa 2408501, Japan
[2] Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Yokohama, Kanagawa 2408501, Japan
关键词
D O I
10.1149/1.2826266
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Self-standing and macroporous carbon materials were prepared by using silica opals (colloidal crystal) as a template. Poly(furfuryl alcohol) was synthesized in the interstice of the silica colloidal crystals, followed by carbonization at 1000 degrees C. The silica templates were etched off to give inverse opal carbons. The inverse opal carbons were characterized by scanning electron micrograph (SEM), reflection spectroscopy, elemental analysis, infrared spectroscopy, X-ray diffraction, direct current conductivity, and N-2-adsorption/desorption experiments. The SEM images and the reflection spectra indicated periodic porous structures that were negative structures of the silica opal templates. The inverse opal carbons were hard carbons, mainly consisting of amorphous incompletely graphitized structures, and have electronic conductivity of 10(2) S cm(-1). The nitrogen adosorption/desorption experiments clarified that the carbons have large N-2-BET (Brunauer-Emmett-Teller) specific surface area resulting from a lot of mesopores, in addition to macropores based on the silica templates. Electric double-layer charging and discharging of the carbons were studied in a tetraethylammonium tetrafluoroborate/propylene carbonate solution. The electric double-layer gravimetric capacitance and the coulombic efficiency of the inverse opal carbon electrodes in the solution increased with a decrease in the diameter of the silica spheres used for the opal templates and became superior to those of a typical activated carbon. (c) 2008 The Electrochemical Society.
引用
收藏
页码:K42 / K49
页数:8
相关论文
共 52 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals [J].
Bertone, JF ;
Jiang, P ;
Hwang, KS ;
Mittleman, DM ;
Colvin, VL .
PHYSICAL REVIEW LETTERS, 1999, 83 (02) :300-303
[3]   Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J].
Blanco, A ;
Chomski, E ;
Grabtchak, S ;
Ibisate, M ;
John, S ;
Leonard, SW ;
Lopez, C ;
Meseguer, F ;
Miguez, H ;
Mondia, JP ;
Ozin, GA ;
Toader, O ;
van Driel, HM .
NATURE, 2000, 405 (6785) :437-440
[4]  
Blanford CF, 2001, ADV MATER, V13, P401, DOI 10.1002/1521-4095(200103)13:6<401::AID-ADMA401>3.0.CO
[5]  
2-7
[6]   Microporous materials - Electrochemically grown photonic crystals [J].
Braun, PV ;
Wiltzius, P .
NATURE, 1999, 402 (6762) :603-604
[7]   Conjugated polymer inverse opals for potentiometric Biosensing [J].
Cassagneau, T ;
Caruso, F .
ADVANCED MATERIALS, 2002, 14 (24) :1837-1841
[8]   Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell [J].
Chai, GS ;
Yoon, SB ;
Yu, JS ;
Choi, JH ;
Sung, YE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (22) :7074-7079
[9]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[10]  
Conley R.T., 1963, J. Appl. Polym. Sci., V7, P37, DOI [10.1002/app.1963.070070104, DOI 10.1002/APP.1963.070070104]