A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria

被引:25
作者
Diez Benavente, Ernest [1 ]
Campos, Monica [1 ]
Phelan, Jody [1 ]
Nolder, Debbie [1 ]
Dombrowski, Jamille G. [2 ]
Marinho, Claudio R. F. [2 ]
Sriprawat, Kanlaya [3 ]
Taylor, Aimee R. [4 ,5 ]
Watson, James [6 ,7 ]
Roper, Cally [1 ]
Nosten, Francois [3 ,6 ]
Sutherland, Colin J. [1 ]
Campino, Susana [1 ]
Clark, Taane G. [1 ,8 ]
机构
[1] London Sch Hyg & Trop Med, Fac Infect & Trop Dis, London, England
[2] Univ Sao Paulo, Inst Biomed Sci, Dept Parasitol, Sao Paulo, Brazil
[3] Mahidol Univ, Fac Trop Med, Mahidol Oxford Trop Med Res Unit, Shoklo Malaria Res Unit, Mae Sot, Tak, Thailand
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[6] Univ Oxford, Nuffield Dept Clin Med Res Bldg, Ctr Trop Med & Global Hlth, Old Rd Campus, Oxford, England
[7] Mahidol Univ, Fac Trop Med, Mahidol Oxford Res Unit, Bangkok, Thailand
[8] London Sch Hyg & Trop Med, Fac Epidemiol & Populat Hlth, London, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
MICROSATELLITE MARKERS; FALCIPARUM; INFECTIONS; EPIDEMIOLOGY; RESISTANCE; DIVERSITY; GENOMICS; EXTENT;
D O I
10.1371/journal.pgen.1008576
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria. Author summaryPlasmodium vivax is the most widespread parasite causing human malaria, with more than one-third of the world's population being at risk of infection. P. vivax is resilient due to its dormant liver phase, and there are increasing reports of drug-resistance and life-threatening infections. Despite this, P. vivax malaria is not always prioritised by elimination programmes. New molecular tools are needed to inform elimination efforts, including through better understanding the geographical source and outbreaks of P. vivax, thereby leading to the halting of transmission and the targeting of reservoirs of infection. Our work describes a 71 genetic marker barcode for P. vivax that has high predictive ability to identify the geographic origin, and has the potential to distinguish local transmission networks. If the 71 genetic marker barcode is implemented within new portable molecular platforms, it is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.
引用
收藏
页数:19
相关论文
共 52 条
[1]   Plasmodium vivax Population Structure and Transmission Dynamics in Sabah Malaysia [J].
Abdullah, Noor Rain ;
Barber, Bridget E. ;
William, Timothy ;
Norahmad, Nor Azrina ;
Satsu, Umi Rubiah ;
Muniandy, Prem Kumar ;
Ismail, Zakiah ;
Grigg, Matthew J. ;
Jelip, Jenarun ;
Piera, Kim ;
von Seidlein, Lorenz ;
Yeo, Tsin W. ;
Anstey, Nicholas M. ;
Price, Ric N. ;
Auburn, Sarah .
PLOS ONE, 2013, 8 (12)
[2]   Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum [J].
Anderson, TJC ;
Haubold, B ;
Williams, JT ;
Estrada-Franco, JG ;
Richardson, L ;
Mollinedo, R ;
Bockarie, M ;
Mokili, J ;
Mharakurwa, S ;
French, N ;
Whitworth, J ;
Velez, ID ;
Brockman, AH ;
Nosten, F ;
Ferreira, MU ;
Day, KP .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (10) :1467-1482
[3]   Harnessing the power of RADseq for ecological and evolutionary genomics [J].
Andrews, Kimberly R. ;
Good, Jeffrey M. ;
Miller, Michael R. ;
Luikart, Gordon ;
Hohenlohe, Paul A. .
NATURE REVIEWS GENETICS, 2016, 17 (02) :81-92
[4]  
[Anonymous], 2018, Depression
[5]   Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population reveals selective pressures and changing transmission dynamics [J].
Auburn, Sarah ;
Benavente, Ernest D. ;
Miotto, Olivo ;
Pearson, Richard D. ;
Amato, Roberto ;
Grigg, Matthew J. ;
Barber, Bridget E. ;
William, Timothy ;
Handayuni, Irene ;
Marfurt, Jutta ;
Trimarsanto, Hidayat ;
Noviyanti, Rintis ;
Sriprawat, Kanlaya ;
Nosten, Francois ;
Campino, Susana ;
Clark, Taane G. ;
Anstey, Nicholas M. ;
Kwiatkowski, Dominic P. ;
Price, Ric N. .
NATURE COMMUNICATIONS, 2018, 9
[6]   Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections [J].
Baniecki, Mary Lynn ;
Faust, Aubrey L. ;
Schaffner, Stephen F. ;
Park, Daniel J. ;
Galinsky, Kevin ;
Daniels, Rachel F. ;
Hamilton, Elizabeth ;
Ferreira, Marcelo U. ;
Karunaweera, Nadira D. ;
Serre, David ;
Zimmerman, Peter A. ;
Sa, Juliana M. ;
Wellems, Thomas E. ;
Musset, Lise ;
Legrand, Eric ;
Melnikov, Alexandre ;
Neafsey, Daniel E. ;
Volkman, Sarah K. ;
Wirth, Dyann F. ;
Sabeti, Pardis C. .
PLOS NEGLECTED TROPICAL DISEASES, 2015, 9 (03)
[7]   Global genetic diversity of var2csa in Plasmodium falciparum with implications for malaria in pregnancy and vaccine development [J].
Benavente, Ernest Diez ;
Oresegun, Damilola R. ;
de Sessions, Paola Florez ;
Walker, Eloise M. ;
Roper, Cally ;
Dombrowski, Jamille G. ;
de Souza, Rodrigo M. ;
Marinho, Claudio R. F. ;
Sutherland, Colin J. ;
Hibberd, Martin L. ;
Mohareb, Fady ;
Baker, David A. ;
Clark, Taane G. ;
Campino, Susana .
SCIENTIFIC REPORTS, 2018, 8
[8]   Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure [J].
Benavente, Ernest Diez ;
Ward, Zoe ;
Chan, Wilson ;
Mohareb, Fady R. ;
Sutherland, Colin J. ;
Roper, Cally ;
Campino, Susana ;
Clark, Taane G. .
PLOS ONE, 2017, 12 (05)
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Genetic Analysis of Primaquine Tolerance in Patient with Relapsing Vivax Malaria [J].
Bright, A. Taylor ;
Alenazi, Thamer ;
Shokoples, Sandra ;
Tarning, Joel ;
Paganotti, Giacomo M. ;
White, Nicholas J. ;
Houston, Stanley ;
Winzeler, Elizabeth A. ;
Yanow, Stephanie K. .
EMERGING INFECTIOUS DISEASES, 2013, 19 (05) :802-805