Anomalous video event detection using spatiotemporal context

被引:148
|
作者
Jiang, Fan [1 ]
Yuan, Junsong [3 ]
Tsaftaris, Sotirios A. [1 ,2 ]
Katsaggelos, Aggelos K. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Radiol, Chicago, IL 60611 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Video surveillance; Anomaly detection; Data mining; Clustering; Context; CLASSIFICATION; RECOGNITION; PATTERNS; SYSTEM; MODELS;
D O I
10.1016/j.cviu.2010.10.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared to other anomalous video event detection approaches that analyze object trajectories only, we propose a context-aware method to detect anomalies. By tracking all moving objects in the video, three different levels of spatiotemporal contexts are considered, i.e., point anomaly of a video object, sequential anomaly of an object trajectory, and co-occurrence anomaly of multiple video objects. A hierarchical data mining approach is proposed. At each level, frequency-based analysis is performed to automatically discover regular rules of normal events. Events deviating from these rules are identified as anomalies. The proposed method is computationally efficient and can infer complex rules. Experiments on real traffic video validate that the detected video anomalies are hazardous or illegal according to traffic regulations. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 50 条
  • [31] An intelligent video analytics model for abnormal event detection in online surveillance video
    Balasundaram, A.
    Chellappan, C.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (04) : 915 - 930
  • [32] Video anomaly detection using deep residual-spatiotemporal translation network
    Ganokratanaa, Thittaporn
    Aramvith, Supavadee
    Sebe, Nicu
    PATTERN RECOGNITION LETTERS, 2022, 155 : 143 - 150
  • [33] Anomalous Behavior Detection with Spatiotemporal Interaction and Autoencoder Enhancement
    Li, Bohao
    Xie, Kai
    Zeng, Xuepeng
    Cao, Mingxuan
    Wen, Chang
    He, Jianbiao
    Zhang, Wei
    ELECTRONICS, 2023, 12 (11)
  • [34] Spatiotemporal Representation Learning for Video Anomaly Detection
    Li, Zhaoyan
    Li, Yaoshun
    Gao, Zhisheng
    IEEE ACCESS, 2020, 8 (08): : 25531 - 25542
  • [35] Anomalous Sound Event Detection Based on WaveNet
    Hayashi, Tomoki
    Komatsu, Tatsuya
    Kondo, Reishi
    Toda, Tomoki
    Takeda, Kazuya
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2494 - 2498
  • [36] Trajectory-Based Anomalous Event Detection
    Piciarelli, Claudio
    Micheloni, Christian
    Foresti, Gian Luca
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2008, 18 (11) : 1544 - 1554
  • [37] Key News Event Detection and Event Context Using Graphic Convolution, Clustering, and Summarizing Methods
    Liu, Zheng
    Zhang, Yu
    Li, Yimeng
    Chaomurilige
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [38] A Novel Approach to Geocaching Event Prognosis Using Spatiotemporal Data
    Hachaj, Tomasz
    Hachaj, Pawel S.
    Ogiela, Marek R.
    IEEE 30TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA 2016), 2016, : 31 - 34
  • [39] Making Anomalies More Anomalous: Video Anomaly Detection Using a Novel Generator and Destroyer
    Hong, Seungkyun
    Ahn, Sunghyun
    Jo, Youngwan
    Park, Sanghyun
    IEEE ACCESS, 2024, 12 : 36712 - 36726
  • [40] The LV Dataset: a Realistic Surveillance Video Dataset for Abnormal Event Detection
    Leyva, Roberto
    Sanchez, Victor
    Li, Chang-Tsun
    2017 5TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF 2017), 2017,