Anomalous video event detection using spatiotemporal context

被引:148
|
作者
Jiang, Fan [1 ]
Yuan, Junsong [3 ]
Tsaftaris, Sotirios A. [1 ,2 ]
Katsaggelos, Aggelos K. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Radiol, Chicago, IL 60611 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Video surveillance; Anomaly detection; Data mining; Clustering; Context; CLASSIFICATION; RECOGNITION; PATTERNS; SYSTEM; MODELS;
D O I
10.1016/j.cviu.2010.10.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared to other anomalous video event detection approaches that analyze object trajectories only, we propose a context-aware method to detect anomalies. By tracking all moving objects in the video, three different levels of spatiotemporal contexts are considered, i.e., point anomaly of a video object, sequential anomaly of an object trajectory, and co-occurrence anomaly of multiple video objects. A hierarchical data mining approach is proposed. At each level, frequency-based analysis is performed to automatically discover regular rules of normal events. Events deviating from these rules are identified as anomalies. The proposed method is computationally efficient and can infer complex rules. Experiments on real traffic video validate that the detected video anomalies are hazardous or illegal according to traffic regulations. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 50 条
  • [1] Video event description in scene context
    Liu, Chunmei
    Hu, Changbo
    Liu, Qingshan
    Aggarwal, J. K.
    NEUROCOMPUTING, 2013, 119 : 82 - 93
  • [2] Spatiotemporal event detection: a review
    Yu, Manzhu
    Bambacus, Myra
    Cervone, Guido
    Clarke, Keith
    Duffy, Daniel
    Huang, Qunying
    Li, Jing
    Li, Wenwen
    Li, Zhenlong
    Liu, Qian
    Resch, Bernd
    Yang, Jingchao
    Yang, Chaowei
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2020, 13 (12) : 1339 - 1365
  • [3] Context and Quality Estimation in Video For Enhanced Event Detection
    Irvine, John M.
    Wood, Richard J.
    AIRBORNE INTELLIGENCE, SURVEILLANCE, RECONNAISSANCE (ISR) SYSTEMS AND APPLICATIONS XII, 2015, 9460
  • [4] Anomalous cluster detection in spatiotemporal meteorological fields
    Ramachandra, Bharathkumar
    Dutton, Benjamin
    Vatsavai, Ranga Raju
    STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (02) : 88 - 100
  • [5] Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder
    Chong, Yong Shean
    Tay, Yong Haur
    ADVANCES IN NEURAL NETWORKS, PT II, 2017, 10262 : 189 - 196
  • [6] Specific event detection for video surveillance using variational Bayesian inference
    Leyva, Roberto
    Sanchez, Victor
    Li, Chang-Tsun
    Maple, Carsten
    NEUROCOMPUTING, 2024, 603
  • [7] Deep learning approaches for video-based anomalous activity detection
    Pawar, Karishma
    Attar, Vahida
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (02): : 571 - 601
  • [8] Anomalous Event Sequence Detection
    Dong, Boxiang
    Chen, Zhengzhang
    Tang, Lu-An
    Chen, Haifeng
    Wang, Hui
    Zhang, Kai
    Lin, Ying
    Li, Zhichun
    IEEE INTELLIGENT SYSTEMS, 2021, 36 (03) : 5 - 13
  • [9] Spatiotemporal Anomaly Detection Using Deep Learning for Real-Time Video Surveillance
    Nawaratne, Rashmika
    Alahakoon, Damminda
    De Silva, Daswin
    Yu, Xinghuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 393 - 402
  • [10] Anomalous sound event detection: A survey of machine learning based methods and applications
    Mnasri, Zied
    Rovetta, Stefano
    Masulli, Francesco
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 5537 - 5586