Anomalous video event detection using spatiotemporal context

被引:149
作者
Jiang, Fan [1 ]
Yuan, Junsong [3 ]
Tsaftaris, Sotirios A. [1 ,2 ]
Katsaggelos, Aggelos K. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Radiol, Chicago, IL 60611 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Video surveillance; Anomaly detection; Data mining; Clustering; Context; CLASSIFICATION; RECOGNITION; PATTERNS; SYSTEM; MODELS;
D O I
10.1016/j.cviu.2010.10.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared to other anomalous video event detection approaches that analyze object trajectories only, we propose a context-aware method to detect anomalies. By tracking all moving objects in the video, three different levels of spatiotemporal contexts are considered, i.e., point anomaly of a video object, sequential anomaly of an object trajectory, and co-occurrence anomaly of multiple video objects. A hierarchical data mining approach is proposed. At each level, frequency-based analysis is performed to automatically discover regular rules of normal events. Events deviating from these rules are identified as anomalies. The proposed method is computationally efficient and can infer complex rules. Experiments on real traffic video validate that the detected video anomalies are hazardous or illegal according to traffic regulations. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 32 条
[1]   Multifeature Object Trajectory Clustering for Video Analysis [J].
Anjum, Nadeem ;
Cavallaro, Andrea .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2008, 18 (11) :1555-1564
[2]  
[Anonymous], P IEEE INT C IM PROC
[3]  
[Anonymous], P IEEE INT C DAT MIN
[4]  
[Anonymous], P IEEE C COMP VIS PA
[5]  
[Anonymous], P IEEE C DAT MIN WOR
[6]  
[Anonymous], P IEEE INT C COMP VI
[7]  
[Anonymous], P IEEE ICCV2005
[8]   Object trajectory-based activity classification and recognition using hidden Markov models [J].
Bashir, Faisal I. ;
Khokhar, Ashfaq A. ;
Schonfeld, Dan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (07) :1912-1919
[9]  
Benezeth Y., 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P2458, DOI 10.1109/CVPRW.2009.5206686
[10]   Anomaly Detection: A Survey [J].
Chandola, Varun ;
Banerjee, Arindam ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2009, 41 (03)