New insights on fast ion-acoustic soliton stopbands and extension to dusty plasmas

被引:5
作者
Maharaj, S. K. [1 ,2 ]
Bharuthram, R. [2 ]
机构
[1] South African Natl Space Agcy SANSA Space Sci, POB 32, ZA-7200 Hermanus, South Africa
[2] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Bellville, South Africa
关键词
DOUBLE-LAYERS; WAVES;
D O I
10.1063/1.5130540
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large amplitude fast ion-acoustic solitons are revisited in a three-component plasma composed of cold ions, warm (adiabatic) ions, and hot Boltzmann electrons to determine where the limits occur in the ranges of the warm ion-to-electron temperature ratio tau and the charge-to-mass ratio of the cold ions relative to the warm ions mu for the existence of stopbands. The warm (adiabatic) ion limiting curve evolves in a similar fashion for increasing values of tau or decreasing values of mu in supporting the existence of stopbands when the warm ion limiting curve is double-valued in the Mach number over part of a range of cold ion densities, to the disappearance of the stopbands when the warm ion limiting curve is single-valued over the complete range of cold ion densities. The bifurcation of the warm ion limiting curve into an upper and lower branch indicates the transition region in parameter space, which is between the region where stopbands are supported and the region where stopbands do not occur. The stopbands are found to have an infinite extent over the range of cold ion densities in the transition region. The widening (or narrowing) of the stopbands over the range of cold ion densities associated with a kappa (or Cairns) distribution of hot ions in a four-component plasma is found to be much weaker than non-thermal electron effects on the stopbands as reported by Maharaj and Bharuthram [Phys. Plasmas 24, 022305 (2017)].
引用
收藏
页数:13
相关论文
共 50 条
[21]   Nonlinear evolution of the ion acoustic instability in artificially created dusty space plasmas [J].
Fu, H. ;
Scales, W. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
[22]   Propagation of ion-acoustic waves in a warm dusty plasma with electron inertia [J].
Barman, S. N. ;
Talukdar, A. .
ASTROPHYSICS AND SPACE SCIENCE, 2011, 334 (02) :345-349
[23]   Heavy Ion-Acoustic Soliton and Dressed Soliton in an Unmagnetized Weakly and Strongly Coupled Plasma [J].
Islam, M. N. ;
Hafez, M. G. ;
Deb, U. K. .
BRAZILIAN JOURNAL OF PHYSICS, 2022, 52 (05)
[24]   Dust-ion acoustic solitons in superthermal dusty plasmas [J].
Pakzad, Hamid Reza ;
Nobahar, Davod .
NEW ASTRONOMY, 2022, 93
[25]   Ion-acoustic supersolitons and double layers in plasmas with nonthermal electrons [J].
Gao, D. -N. ;
Zhang, J. ;
Yang, Y. ;
Duan, W. -S. .
PLASMA PHYSICS REPORTS, 2017, 43 (08) :833-837
[26]   Dressed ion-acoustic soliton in a plasma with electrons featuring Tsallis distribution [J].
Amour, Rabia ;
Gougam, Leila Ait ;
Tribeche, Mouloud .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 436 :856-864
[27]   Effect of electron trapping and background nonextensivity on the ion-acoustic soliton energy [J].
Djebarni, Lyes ;
Gougam, Leila Ait ;
Tribeche, Mouloud .
ASTROPHYSICS AND SPACE SCIENCE, 2014, 350 (02) :541-545
[28]   Effect of exchange-correlation on quantum ion-acoustic soliton energy [J].
Mebrouk, Khireddine ;
Tribeche, Mouloud .
PHYSICS LETTERS A, 2014, 378 (47) :3523-3525
[29]   Effect of non-thermal electrons on ion-acoustic dressed solitons in unmagnetised plasmas [J].
Chawla, J. K. .
PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (01)
[30]   Dust ion-acoustic solitary structures in non-thermal dusty plasma [J].
Das, Animesh ;
Bandyopadhyay, Anup ;
Das, K. P. .
JOURNAL OF PLASMA PHYSICS, 2012, 78 :149-164