New insights on fast ion-acoustic soliton stopbands and extension to dusty plasmas

被引:5
作者
Maharaj, S. K. [1 ,2 ]
Bharuthram, R. [2 ]
机构
[1] South African Natl Space Agcy SANSA Space Sci, POB 32, ZA-7200 Hermanus, South Africa
[2] Univ Western Cape, Dept Phys & Astron, Robert Sobukwe Rd, ZA-7535 Bellville, South Africa
关键词
DOUBLE-LAYERS; WAVES;
D O I
10.1063/1.5130540
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large amplitude fast ion-acoustic solitons are revisited in a three-component plasma composed of cold ions, warm (adiabatic) ions, and hot Boltzmann electrons to determine where the limits occur in the ranges of the warm ion-to-electron temperature ratio tau and the charge-to-mass ratio of the cold ions relative to the warm ions mu for the existence of stopbands. The warm (adiabatic) ion limiting curve evolves in a similar fashion for increasing values of tau or decreasing values of mu in supporting the existence of stopbands when the warm ion limiting curve is double-valued in the Mach number over part of a range of cold ion densities, to the disappearance of the stopbands when the warm ion limiting curve is single-valued over the complete range of cold ion densities. The bifurcation of the warm ion limiting curve into an upper and lower branch indicates the transition region in parameter space, which is between the region where stopbands are supported and the region where stopbands do not occur. The stopbands are found to have an infinite extent over the range of cold ion densities in the transition region. The widening (or narrowing) of the stopbands over the range of cold ion densities associated with a kappa (or Cairns) distribution of hot ions in a four-component plasma is found to be much weaker than non-thermal electron effects on the stopbands as reported by Maharaj and Bharuthram [Phys. Plasmas 24, 022305 (2017)].
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Non-thermal effects of electrons on stopbands of fast ion-acoustic solitons
    Maharaj, S. K.
    Bharuthram, R.
    PHYSICS OF PLASMAS, 2017, 24 (02)
  • [2] Dust ion-acoustic shocks in quantum dusty pair-ion plasmas
    Misra, A. P.
    PHYSICS OF PLASMAS, 2009, 16 (03)
  • [3] Ion-acoustic solitons in dusty plasma
    Losseva, T. V.
    Popel, S. I.
    Golub', A. P.
    PLASMA PHYSICS REPORTS, 2012, 38 (09) : 729 - 742
  • [4] Ion-acoustic Gardner solitons in negative ion plasmas
    Rehman, Momin A.
    Mishra, M. K.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021, : 2181 - 2198
  • [5] Localized ion-acoustic solitons in collision with dusty plasma
    Pakzad, H. R.
    Javidan, K.
    PHYSICA SCRIPTA, 2022, 97 (05)
  • [6] Fundamental Properties of Dust Ion-Acoustic and Rogue Wave Analysis in Relativistic Dusty Plasmas
    Bhuyan, Muhammad Shahnewaz
    Imon, Umma
    Alam, Mohammad Shah
    BRAZILIAN JOURNAL OF PHYSICS, 2025, 55 (02)
  • [7] Ion-acoustic soliton energy in a plasma with nonextensive electrons
    Gougam, Leila Ait
    Tribeche, Mouloud
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 407 : 226 - 230
  • [8] Effect of Dust Size Distribution on Ion-Acoustic Solitons in Dusty Plasmas with Different Dust Grains
    Gao, Dong-Ning
    Yang, Yang
    Yan, Qiang
    Wang, Xiao-Yun
    Duan, Wen-Shan
    PLASMA PHYSICS REPORTS, 2017, 43 (02) : 212 - 217
  • [9] Ion-acoustic solitary structures at the acoustic speed in a collisionless magnetized nonthermal dusty plasma
    Debnath, Debdatta
    Bandyopadhyay, Anup
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2021, 76 (11): : 985 - 1005
  • [10] Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas
    Maharaj, S. K.
    Bharuthram, R.
    Singh, S. V.
    Lakhina, G. S.
    PHYSICS OF PLASMAS, 2015, 22 (03)